Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.2.123

Analysis on Current and Optical Characteristics by Electronic Ink Loading Method in Charged Particles Type Display  

An, Hyeong-Jin (Department of Electronic Engineering, Chungwoon University)
Kim, Young-cho (Department of Electronic Engineering, Chungwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.2, 2020 , pp. 123-129 More about this Journal
Abstract
We analyzed the drift current by charged particles according to the loading methods applied into a closed cell by electronic ink at a reflective-type display panel using an electrophoretic mechanism. For this experiment, various panels were fabricated with injection voltages for electronic ink taking values in the range -4~0 V. The size of each cell was 220 ㎛ × 220 ㎛ and height of the barrier rib was 54.28 ㎛. The electronic ink was fabricated by mixing electrically neutral fluid and single-charge white particles. Drift current was measured by moving charged particles. A biasing voltage of 6 V was applied to the display panel. As a result, the drift current was proportional to the injection voltage for electronic ink, but it decreased in case of an injection voltage above -3 V. Our experimentation ascertained that the concentration of charged particles injected into closed cells is controlled by the injection voltage and the selective injection of charged particles above movable q/m is possible.
Keywords
Barrier ribs type electronic paper; Drift current; Electrophoresis; Charged particle;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Y. Park, H. M. Lee, and S. H. Lee, Korean Soc. Emotion Sensibility, 18, 119 (2015). [DOI: https://doi.org/10.14695/KJSOS.2015.18.4.119]   DOI
2 G. R. Jo, K. Hoshino, and T. Kitamura, Chem. Mater., 14, 664 (2002). [DOI: https://doi.org/10.1021/cm010664n]   DOI
3 W. M. Chim, M.S. Thesis, p. 1-86, Delft University of Technology, Delft (2009).
4 D. J. Lee and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 169 (2009). [DOI: https://doi.org/10.4313/JKEM.2009.22.2.169]   DOI
5 S. H. Kwon, S. G. Lee, W. K. Cho, B. G. Ryu, and M. B. Song, IMID Digest, 5, 423 (2005).
6 J. Heikenfeld, P. Drzaic, J. S. Yeo, and T. Koch, J. Soc. Inf. Disp., 19, 129 (2011). [DOI: https://doi.org/10.1889/jsid19.2.129]   DOI
7 R. Hattrori, S. Yamada, Y. Masuda, N. Nihei, and R. Sakurai, J. Soc. Inf. Disp., 35, 136 (2004). [DOI: https://doi.org/10.1889/1.1825765]
8 B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, Nature, 394, 253 (1998). [DOI: https://doi.org/10.1038/28349]   DOI
9 R. Wisnieff, Nature, 394, 225 (1998). [DOI: https://doi.org/10.1038/28278]   DOI
10 S. W. Park, K. Y. Kwon, S. K. Chang, and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 844 (2009). [DOI: https://doi.org/10.4313/JKEM.2009.22.10.844]   DOI
11 D. J. Lee, Y. M. Oh, S. W. Park, B. E. Park, and Y. C. Kim, J. Disp. Technol., 8, 361 (2012). [DOI: https://doi.org/10.1109/JDT.2012.2190135]   DOI
12 S. I. Lee, Y. C. Hong, and Y. C. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 171 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.3.171]   DOI
13 D. J. Lee, R. E. Sloper, Y. H. Jeon, S. K. Han, S. Lee, K. H. Choi, W. Huh, and Y. C. Kim, J. Soc. Inf. Disp., 42, 1523 (2011). [DOI: https://doi.org/10.1889/1.3621149]
14 R. J. Nash, H. Associates, J. T. Bickmore, M. L. Grande, T. Vasta, and R. N. Muller, NIP24 and Digital Fabrication, 21, (2008).
15 D. J. Lee, I. H. Kim, and Y. C. Kim, J. Korean Acad.-Ind. Coop. Soc., 167 (2008).
16 D. J. Lee and Y. C. Kim, J. Korean Acad.-Ind. Coop. Soc., 10, 1186 (2009). [DOI: https://doi.org/10.5762/KAIS.2009.10.6.1186]