• Title/Summary/Keyword: Current Feedback

Search Result 929, Processing Time 0.024 seconds

Feedback Control Loop Design of DC-DC Converter Systems Using Subcircuit (Subcircuit를 이용한 DC-DC 컨버터 시스템의 피드백 제어루프 설계)

  • Kwon, Soon-Kurl;Lee, Su-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • In this paper, a novel approach to using Subcircuit of Pspice in designing feedback for DC-DC converter systems is proposed. Proposed new approach, the feedback design procedures which are based on small signal modeling are programmed as a subcircuit in Pspice. For this purpose, Analog Behavioral Modeling (ABM) is used. By using the subcircuit, the component values of the error compensation amplifier can be easily obtained by means of Pspice DC analysis. The methodology of development is presented in detail and application examples demonstrated the effectiveness of the proposed approach in designing feedbacks for DC-DC converters. The converter with PWM method used continuous current mode and calculated buck converter control signal with average and linear current technique. To decide pole and zero K-method was adapted and this kind of design procedure took stable function.

  • PDF

Design of Single-Inductor Dual-Output Boost-Boost DC-DC Converter with Dual Feedback Loop Based on Relative Sawtooth Generator (Dead-time을 갖는 톱니파 발생기를 이용한 이중 피드백 루프 기반 단일 인덕터 이중 출력 승압형 변압기 설계)

  • Yun, Dam;Kim, Dong-Young;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents a control method of Single-Inductor Dual-Output DC-DC Converter using Common mode feedback and differential feedback loops. To generate duty used for differential mode feedback loop, this paper propose relative sawtooth circuit using current divider circuit which makes ramp signal with variable dead-time. Two outputs of the Single-Inductor Dual-Output DC-DC Converter are specified for 2.8 V and 4.2 V with input voltage 2.5 V. The maximum conversion efficiency of designed SIDO DC-DC Converter is 95% at total output power of 539mW. Cross regulations of Boost1 and Boost2 are 3.57% and 4% each, when increasing twice times output current.

OLED Lighting System Integrated with Optical Monitoring Circuit (광 검출기가 장착된 OLED 조명 시스템)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

A CV.CC Concurrent-Controled LED Converter (정전압.정전류 동시제어 LED 컨버터)

  • Mang, Chung-Yong;Lee, Won-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.193-198
    • /
    • 2012
  • An LED converter used to operate an LED with high efficiency and long lifespan, activates an LED by keeping voltage and current constant. In spite of voltage drop by LED's overheating and over-voltage by damage of a power line and by circuit problem, most existing LED converters supply unchanged constant voltage and current to the LED. Eventually, LED is out of order because of over-voltage or over-current. To avoid the breakdown of an LED by over-voltage and over-current, we propose a new scheme which deactivate the PWM circuit in the event of over-current generating. The PWM circuit operates below the pre-determined level of current. While the over-voltage is generated in PWM circuit, the feedback circuit makes the PWM circuit stopped and therefore prevents LED from being damaged by over-voltage and over-current.

Characteristics of Boost Active Power Factor Correction Converter (부스트 능동 역률개선 컨버터의 특성)

  • Jang, Jun-Young;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1152-1159
    • /
    • 2015
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The PFC circuit with a boost converter using an input power source is studied in this paper. In a boost PFC circuit, there are two feedback control loops: a current feedback loop and a voltage feedback loop. In this paper, the regulation performance gained by using the output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of the designed boost PFC circuit is confirmed by both MATLAB simulation and experimental results.

A Novel Double-Loop Vector Control Strategy for PMSMs Based on Kinetic Energy Feedback

  • Wang, Anbang;Wang, Qunjing;Jiang, Weidong
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1256-1263
    • /
    • 2015
  • A novel vector control strategy for a permanent magnet synchronous motor (PMSM) based on the kinetic energy stored in the rotor is proposed in this paper. The novel strategy is composed of two closed loops, in which the current loop is the inner loop, and the kinetic energy serves as the outer loop. The theoretical basis and the design procedure of the two loops are given. The feasibility of the proposed control strategy is verified by experimental results. When compared with traditional vector control strategies, the proposed vector control strategy based on energy feedback has better dynamic performance. In addition, an effective estimation solution for the load variation is put forward.

Digital State Feedback Control for a Single/Parallel Module Buck Converter Using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.31-33
    • /
    • 2007
  • In this paper, a simple digital control scheme for the single/parallel module buck converters is proposed using a digital state feedback control method. The discrete state feedback controller structure for the robust tracking control is derived by using the error state. The proposed control system can precisely achieve the interleaved current sharing and the output regulation, and can achieve the systematical controller design for a given converter specification using the pole placement technique. For a design example, the single module buck converter is simulated using the MATLAB Simulink software and two 100W parallel module buck converters with a TMS320F2812 DSP is implemented.

  • PDF

A Study Compensation Method for Dynamic Characteristics in Electro-Hydraulic Servosystem Equipping Load Pressure Feedback Compensator (부하압력 피이드백 보상기를 장착한 전기-유압서보계의 동특성 개선에 관한 연구)

  • Kim, Jong-Kyum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.126-136
    • /
    • 1992
  • In this paper, a simple structured feedback compensation scheme for a electro-hydraulic servo system to keep the response characteristics unchanged regardless of the load variation is proposed. In electro-hydraulic servo system, servovalve is most important control element. But the relation between input corrent and output flowrate of the servovalve has properties as follows; firstly, in spite of constant input current, output flowrate decreases as load pressure increases, secondly, according to frequency response of typical servovalve, the characteristics of gain and phase shift is something like 2'nd order system. Load pressure feedback compensation method has been applied to eliminate the first influence, the second influence has been improved by phase lead compensation method. As a result of above compensation methods, regardless of variation load condition, spring and inertia load, the compensation scheme has been verified to be effective within the range of frequency less than 25Hz by static response and dynamic response in time domain and frequency domain through experiments.

  • PDF

Feedback Burst Loss Ratio Control for Link Performance Improvement in Optical Bur st Switching Networks

  • Linh, To Hoang;Yoon, Gwi-Ok;Nam, Jae-Hyun;Solongo, Ganbold;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1067-1076
    • /
    • 2013
  • Known as an important criterion that evaluates performance of future high-speed backbone networks, burst data loss ratio is well-studied in Optical Burst Switching networks. Current literatures mostly focus on reduce burst loss ratio without considering the system stability and link utilization after reducing. In this paper, we propose a novel framework which comes from feedback theoretic to dynamically control burst loss ratio in OBS. The proposed scheme tries to track the pre-set values of burst loss ratio and increases the stability and link utilization degree. The simulation results show that measured burst loss ratio always tracks setup reference with small errors, wavelength channel utilization is increased up to 2% and the system stability is also improved.

The Stablity and Transient Response in the Buck-Boost DC-DC Converter (승강엽형 DC-DC 콘버어터의 안정도 및 과도 응답)

  • 김희준;김순창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.421-430
    • /
    • 1991
  • This paper investigated the errect of the right-half-plane zero on stability in the buck-boost DC-DC converter which is one type of the switching regulator and the stability region for the variation of the output current is obtained by evaluating the feedback gain. And it is clarified that the damping ratio decreases gradually by increase of the feedback loop gain and the regulation system of the converter becomes unstable, and from the transient response analysis we obtainedthe stability region about this converter. From above result it is known that the stability decreases by the existence of the right-half-plane zero. For the improvement of stability, we carried out one pole compensation in feedback circuit and obtained the avaliable stability region in relation to the gain bandwidth product from the stability and transient response analysis. These results were established experiment.

  • PDF