• Title/Summary/Keyword: Curing cycle

Search Result 79, Processing Time 0.029 seconds

Research of Early-age Strength Development Technology for Remove the Steel Form of Large-wide Tunnel Lining Concrete (대단면 터널 라이닝 거푸집의 조기 제거를 위한 초기 강도 발현 기법 연구)

  • Kim, Kwang-Don;Lee, Deuk-Bok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.116-127
    • /
    • 2014
  • The studies were carried out to process one cycle for a day to the large section tunnel lining concrete. Climatic characteristics of the tunnel inside are changed, when the temperature of the concrete placement is low, the mold remove time is increased that the heat of hydration speed be delayed because affects the strength development, to compensate for this, after installing the curing sheet on both sides of the steel form and installation of tunnel entrance, when it comes to providing the additional heat source of $28{\pm}2^{\circ}C$ therein, it was to be achieved early strength development control standards (4.5MPa) presented as a crack control scheme or more, thus, It was able to remove after age of 14hr from mold. On the other hand, under the conditions of $10{\pm}1^{\circ}C$ that a natural curing temperature in the tunnel, it was analyzed must ensure the curing time of 36hr or more after concrete placement. Throughout this study, the concrete strength development and the temperature in the early-age concrete, it can find that reverify the curing temperature is greatly affected, even concrete fly ash is mixed 10%, if it is possible to raise the surface temperature for a predetermined time, is not a problem in the early strength development.

Wear Of Dental Restorative Composite Resins Cured by Two Different Light Sources (치아 충전용 복합레진의 광중합 광원 종류에 따른 마멸 비교)

  • Kim H.;Lee K.Y.;Park S. H.;Jung I. Y.;Jeon S. B.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.350-354
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ?LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

  • PDF

Change in compressive strength of lightweight geopolymers after immersion (침지 후 경량 지오폴리머의 압축강도 변화)

  • Kim, Hakmin;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.174-181
    • /
    • 2021
  • Lightweight geopolymers were fabricated by using IGCC (integrated gasification combined cycle) slag and Si sludge which are classified as general wastes (recyclable resources). Three curing methods were tried to investigate the changes in compressive strength and density according to the curing method and immersion time. Immersion period was tried up to 21 days to observe long-term performance in water. Compressive strength of the specimens cured in oven decreased abruptly with an increase in immersion time. Compressive strength of the specimen cured in autoclave was low after 3 and 7 day immersion; however, increased rapidly after 21 day immersion. On the contrary, compressive strength of the specimen cured in autoclave and oven was high but substantially decreased after 21 day immersion. Conclusively, it was speculated that oven curing is effective for the compressive strength development at early age; however, autoclave curing is more desirable for the long-term performance in water.

A Study on the Thermo-mechanical Characteristics and Adhesion Reliability of Anisotropic Conductive Films Depend on the Curing Methods of Epoxy Resins (에폭시 레진의 경화방법에 따른 이방성 전도필름의 접합신뢰성 및 열적기계적 특성 변화)

  • Gil, Man-Seok;Seo, Kyoung-Won;Kim, Jae-Han;Lee, Jong-Won;Jang, Eun-Hee;Jeong, Do-Yeon;Kim, Su-Ja;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • To improve the curing method of anisotropic conductive film (ACF) at low temperature, it was studied to replace the thermal latent curing agent of imidazole compounds by the curing agent of cationically initiating type. Thermo-mechanical properties such as glass transition temperature, storage modulus, and coefficient of thermal expansion were investigated for the analysis of curing behavior. The reliability of ACF were observed in thermal cycle and high temperature-high humidity test. ACF using cationic initiator showed faster curing, lower CTE, and higher $T_g$ than the case of using imidazole curing agent, which is important for the high temperature stability. Furthermore, ACF using cationic initiator maintained a stable contact resistance in reliability test, although it was cured at low temperature and fast rate. With these results, it was confirmed that the curing method of epoxy had great effect on thermo-mechanical properties and reliability of ACF.

Gamma radiation shielding properties of poly (methyl methacrylate) / Bi2O3 composites

  • Cao, Da;Yang, Ge;Bourham, Mohamed;Moneghan, Dan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2613-2619
    • /
    • 2020
  • This work investigated the gamma-ray shielding performance, and the physical and mechanical properties of poly (methyl methacrylate) (PMMA) composites embedded with 0-44.0 wt% bismuth trioxide (Bi2O3) fabricated by the fast ultraviolet (UV) curing method. The results showed that the addition of Bi2O3 had significantly improved the gamma shielding ability of PMMA composites. Mass attenuation coefficient and half-value layer were examined using five gamma sources (Cs-137, Ba-133, Cd-109, Co-57, and Co-60). The high loading of Bi2O3 in the PMMA samples improved the micro-hardness to nearly seven times that of the pure PMMA. With these enhancements, it was demonstrated that PMMA/Bi2O3 composites are promising gamma shielding materials. Furthermore, the fast UV curing exerts its great potential in significantly shortening the production cycle of shielding material to enable rapid manufacturing.

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process (하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가)

  • 손영준;이기현;김국진;한중원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF

Expert Cure System for the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료 제조의 전문가시스템 연구)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1773-1782
    • /
    • 1994
  • In this paper, the expert cure system for carbon fiber epoxy composite materials, which controls the temperature and pressure of the autoclave according to the several rules, was developed to manufacture better composite products in shorter curing time. The rules were based on the on-line measured quantities such as the dielectric properties and temperature of the composites and the pressure of the autoclave. The curing time and the mechanical properties of the composite materials manufactured with the expert cure system were compared to those of the specimens manufactured with the conventional cure cycle.

Cure and Heat Transfer Analysis in LED Silicone Lens using a Dynamic Cure Kinetics Method (승온 반응속도식을 이용한 LED용 실리콘 렌즈의 경화 및 열전달해석)

  • Song, M.J.;Kim, K.H.;Hong, S.K.;Park, J.Y.;Lee, J.W.;Yoon, G. S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Recently, silicone is being used for LED chip lens due to its good thermal stability and optical transmittance. In order to predict residual stresses, which cause optical birefringence and mechanical warpage of silicone, a finite element analysis was conducted for the curing of silicone during molding. For the analysis of the curing process, a dynamic cure kinetics model was derived based on the results of a differential scanning calorimetry (DSC) testing and applied to the material properties for finite element analysis. Finite element simulation results showed that a step cure cycle reduced abrupt reaction heat and showed a decrease in the residual stresses.

Curing Behaviors and Viscoelastic of UPE Resins with Different Glycol Molar Ratios (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 경화거동 및 점탄성)

  • Lee, Sang-Hyo;Park, Yung-Hoon;An, Seung-Kook;Lee, Jang-Oo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2001
  • In this study, the effects of different glycol molar ratios of unsaturated polyester(UPE) resins on the curing behaviors were investigated. The cross linking process was checked or monitored by differential scanning calorimetry(DSC) and by viscoelastic properties of rigid-body pendulum model. The knife-edge from which the pendulum is suspended, is immersed in a reaction mixture, and the change of the viscoelastic behavior brings on those of the period(T) and logarithmic decrement(${\Delta}$) of the damped free oscillations of the pendulum. The values of T and ${\Delta}$ obtained are related to the dynamic modulus(E') and modulus loss(E'). The information on the viscoelastic behavior of unsaturated polyester(UPE) resins during the curing process are shown to illustrate the usefulness of the techniques. As the content of NPG in a propylene glycol(PG)/NPG glycol mixture increased, both the cycle time during cure and the change of damping during cure of UPE resin decreased.

  • PDF