• Title/Summary/Keyword: Curing conditions

Search Result 695, Processing Time 0.027 seconds

An Experimental Study on the Freezing and Thawing Resistance of Mortar Influenced by Steam Curing Conditions (증기양생조건이 시멘트 모르타르의 동결융해저항성에 미치는 영향)

  • Jang, Moon-Ki;Park, Kwang-Su;Kim, Kwan-Ho;Yoon, Seong-Soo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.185-188
    • /
    • 2001
  • In this study, the characteristics of freezing and thawing resistance, the compressive strength, and the change in height of cement mortar according to a steam and taler curing conditions has been studied. To this end, the major test variables include the period of the early curing, curing temperature and the later curing. The strength test as well as volume variousness have been conducted to explore the characteristics of freezing and thawing resistance on the curing conditions. The experimental results can be efficiently used to improve the characteristics of freezing and thawing resistance for concrete products carrying steam curing.

  • PDF

Effect of Curing Conditions on the Characteristics of Chloride Ion Diffusion in Concrete (콘크리트의 염소이온 확산특성에 미치는 양생조건의 영향)

  • 임병탁;배수호;정영수;심은철;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.715-720
    • /
    • 2003
  • The chief factors for the penetration and diffusion of chloride ions in concrete are water-cement ratio(W/C), aging, curing conditions, chloride ions concentration of given environment., wet and dry conditions and etc. In this study, of these factors effect of curing conditions such as standard and outdoor curing on the characteristics of chloride ions diffusion in concrete were researched when environmental factors for the penetration and diffusion of chloride ions were constant. For this purpose, the voltages passing through the diffusion cell were measured by using accelerated test method using potential difference, and then diffusion coefficients of chloride ions by using Andrade's method were estimated for 44%, 49.5% and 60% of w/c, respectively. As a result., according to curing conditions correlation among diffusion coefficients of chloride ions, W/C and aging were concluded through multiple regression model.

  • PDF

Engineering Characteristics of Soil-Lime or Cement Mixtures on the Curing Conditions (양생조건에 따른 생석회 혼합토의 공학적 특성)

  • 민덕기;황광모;이완진;최영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.305-312
    • /
    • 2002
  • To estimate the effects of lime and cement on the surplus soil, the engineering properties of the marine deposited clay and the fresh water clay were analyzed. The specimen were prepared under several curing conditions, namely, underwater curing, wet condition curing and underwater curing after heating. Unconfined compression strength were estimated after 7, 14, 28 and 60 days, respectively. The strength were steeply increased with time until first 14 days. Specially the increase of the strength of the heated soil were large.

  • PDF

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete (고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

The Effect of Curing condition on Adhesion in Tension of Polymer-Modified Mortars (양생존건이 폴리머 시멘트 모르터의 접착강도에 미치는 영향)

  • 전우성;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.349-356
    • /
    • 1997
  • The purpose of this study is to evaluate the effect of curing conditions on adhesion in tension of polymer-modified mortar to cement mortar substrate in comparision with ordinary cement mortar. The polymer-modifies mortars using two polymer dispersions and a redispersible polymer power are prepared with various polymer-cement ratios, and tested for the adhesion in tension of the specimens subjected to five curing conditions. From the test results, the adhesion in tension of polymer-modified mortars tends to increase with increasing polymer-cement ratio irrespective of the polymer types and curing conditions. It is apparent that adhesion in tension of polymer-modified mortars is considerably influenced by curing conditions.

  • PDF

A Study on the Hardening Characteristics of Ground Injection Grout under Various Curing Conditions (다양한 양생조건에서 지반주입 그라우트의 경화특성에 대한 연구)

  • Heo, Hyungseok;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.11-20
    • /
    • 2020
  • For water barrier and reinforcing grout in soft ground, the verification of durability was conducted over the initial and long-term ages under various curing conditions. The grout was made of water glass system, fast-hardening mineral (FHM) system, and acrylic polymer system. There were three types of curing conditions that were tab water curing, artificial seawater curing, and atmospheric curing. And the various tests were performed for each sample by age, uniaxial compressive strength, length change, and weight change. As artificial seawater, MgCl2 and MgSO4 aqueous solutions were prepared and used, respectively. As the test results, the fast-hardening mineral system and acrylic polymer system were cured stably without significant change in durability in tap water and artificial sea water, whereas water glass system showed a very rapid drop in durability under artificial sea water conditions compared to tap water. In atmospheric curing conditions, durability is lowered compared to water curing in all cases, and in particular, the weight loss in the FHM system and water glass system is about 62% and 60%, respectively, resulting in a significant decrease in durability.

Characteristics of Concrete Strength Development Based on Cement Type and Curing Temperature in Cold-Weather Conditions (한중조건에서 시멘트 종류 및 양생온도별 콘크리트의 강도 발현 특성)

  • Han, Jun-Hui;Lim, Gun-Su;Lee, Hyeon-Jik;Park, Jae-Woong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.153-154
    • /
    • 2023
  • In this study, analyzed the difference in compressive strength of concrete under cold conditions, using the 28-day standard curing compressive strength as a reference and examining variations based on cement types and curing temperatures. The results showed that the strength difference based on curing temperatures reached up to 9MPa at 0℃. However, as the curing period progressed, the difference in strength due to curing temperature gradually diminished. These findings are anticipated to be valuable for concrete mixing and quality control in cold weather conditions.

  • PDF

Residual Stress Comparison of Type III Hydrogen Tank by Curing Conditions (Type III 수소탱크 경화조건에 따른 잔류응력 비교)

  • Yong-Chul Shin
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • Since the residual stress of hydrogen tank is directly related to durability, it is very important to reduce it for safety. Type II~IV hydrogen tank are manufactured by the filament winding method, in which the fiber is impregnated with resin and wound around the liner. Residual stress in composite is affected by curing conditions and fiber tension etc. In this study, the effect of curing conditions on residual stress was analyzed when manufacturing a Type III hydrogen tank using carbon fiber filament winding process. First, the curing behavior of the epoxy resin was analyzed using a differential scanning calorimetry. Through this, the curing temperature was set to 140℃. During the same curing time, the specimens were cured under 2-stage curing condition that reached 140℃ earlier and a 4-stage curing condition that reached 140℃ later, respectively. After curing, the residual stress of the composite material was measured by the ring slitting method, and the experimental values were compared with numerical values. It was confirmed that there was a significant difference in residual stress according to the optimization of curing conditions.