• Title/Summary/Keyword: Curing Concrete

Search Result 1,383, Processing Time 0.02 seconds

Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars

  • Benli, Ahmet;Karatas, Mehmet;Sastim, M. Veysel
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2017
  • The aim of this study is to investigate the effect of the bond strength of self-compacting mortars (SCMS) produced from ground pumice powder (GPP) as a mineral additive. In this scope, six series of mortars including control mix were prepared that consist of 7%, 12%, 17%, 22% and 27% of ground pumice powder by weight of cement. A total of 54 specimens of $40{\times}40{\times}160mm$ were produced and cured at the age of 3, 28 and 90-day for compressive and tensile strength tests and 18 specimens of $150{\times}150{\times}150mm$ mortar were prepared and cured at 28 days for bond strength tests. Flexural tensile strength and compressive strength of $40{\times}40{\times}160mm$ specimens were measured at the curing age of 7, 28 and 90-day. Mini V-funnel flow time and mini slump flow diameter tests were also conducted to obtain rheological properties. As a result of the study, it was observed that the SCMs containing 12% of GPP has the highest bond strength as compared to control and GPP mortars. Compressive strength slightly increased up to 12% of GPP.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

Development of slag based Shirasu geopolymer

  • Katpady, Dhruva Narayana;Takewaka, Koji;Yamaguchi, Toshinobu
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Shirasu, a pyroclastic flow deposit, showed considerable performance as aluminosilicate source in geopolymer, based on past research. However, the polymerization reactivity was somewhat lower compared to the traditional fly ash based geopolymer even though the long-term strength was fairly good. The present study concentrates on the development of higher initial strength performance of Shirasu based geopolymer by utilizing ground granulated blast furnace slag as an admixture. Mortars with various mix proportions were adopted to study the effect of parametric changes on strength development along with the addition of slag in different percentages. A combination of sodium hydroxide and sodium silicate was used as alkaline activators considering parameters like molar ratios of alkali to geopolymer water and silica to alkali molar ratio. The mortars were cured at elevated temperatures under different curing conditions to analyze the effect on strength development. Compressive strength test, mercury intrusion porosimetry and X-ray powder diffraction were carried out to assess the strength performance and microstructure of slag-Shirasu based geopolymer. Based on the experimental study, it was observed that the initial and long-term strength development of Slag-Shirasu geopolymer were improved by the addition of slag.

Studies on the Preparation of Mortar-Plastic Composite

  • Pyun, Hyung-Chick;Lee, Kyung-Hee
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.73-79
    • /
    • 1974
  • The preparation method of the mortar-plastic composites(M P C) were studied with styrene, methyl methacrylate and vinyl acetate as monomers. Radiation, thermal-catalytic and radiation-catalytic methods were used as curing methods. Almost all of the above monomers and methods were possible to use for preparing M P C Although thermal-catalytic method was excellent to get M P C in a short time, the tensile strength of the product was less than those obtained by radiation method. It was possible to prepare the M P C which included up to about 10% plastics and was strengthened about ten times on the properties of acid resistandes and tensile strength comparing with the control. The improvement of the properties is much superior to concrete-plastic composite(C P C).

  • PDF

Mechanical and Chemical Characteristics of Bottom Ash Aggregates Cold-bonded with Fly Ash (플라이애시로 표면개질한 바텀애시 경량골재의 물리 화학적특성)

  • Kim, Hyeong-Ki;Ha, Kyung-Ae;Jang, Jeong-Gook;Lee, Haeng-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.57-63
    • /
    • 2014
  • Bottom ash can be used as pelletizing seeds in unsintered artificial lightweight aggregates, so it can be called as 'cold-bonded aggregates'. In the present study, the mechanical and chemical characteristics of bottom ash aggregates cold-bonded with fly ash were investigated. The crushing strength and the water transfer characteristic of the aggregates, which may affect the strength gain of the concrete, were evaluated. Moreover, the degree of hydration and the hydration products of the aggregates were analyzed to verify the chemical stability of the aggregates. Compared to commercialized artificial lightweight aggregates manufactured by sintering process, cold-bonded fly/bottom ash aggregates had similar levels of water transfer characteristics, while having lower strengths. The calcium hydroxide in the aggregates was almost completely consumed after 28 days moist curing.

Integrity Test of DCM Treated Soils with a Cross-hole Sonic Logging (시추공간 음파검층법을 이용한 심층혼합 개량지반의 건전도 조사)

  • 김진후;조성경
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.73-78
    • /
    • 2001
  • Soundness evaluation of a structure being constructed under the sea is usually difficult. In this study, a cross-hole sonic logging(CSL) which have been used for non-destructive test of concrete piles is adopted for the integrity test and monitoring of DCM(deep cement mixing) treated soils. Chemical and physical characteristics of raw ground materials are analysed to delineate ground environmental effects on the strength of DCM treated soils. In order to convert cross-hole sonic logging data into compressive strength, correlations between compressive strengths and wave velocities of core samples have been obtained. It is found that there is little effect of ground environment on the strength of the DCM treated soils, and the density distribution of core samples and cross-hole logging data show that a defective zone may exist in the DCM treated soils. With the time lapse, however, the defective zone has been cured and consequently, compressive strength of the DCM treated soils increases and satisfies the design parameter. From this study it can be concluded that the cross-hole sonic logging can be used for the integrity test as well as monitoring the curing stage of the structures, successfully.

  • PDF

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Properties and pozzolanic reaction degree of tuff in cement-based composite

  • Yu, Lehua;Zhou, Shuangxi;Deng, Wenwu
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2015
  • In order to investigate the feasibility and advantage of tuff used as pozzolan in cement-based composite, the representative specimens of tuff were collected, and their chemical compositions, proportion of vitreous phase, mineral species, and rock structure were measured by chemical composition analysis, petrographic analysis, and XRD. Pozzolanic activity strength index of tuff was tested by the ratio of the compression strength of the tuff/cement mortar to that of a control cement mortar. Pozzolanic reaction degree, and the contents of CH and bond water in the tuff/cement paste were determined by selective hydrochloric acid dissolution, and DSC-TG, respectively. The tuffs were demonstrated to be qualified supplementary binding material in cement-based composite according to relevant standards. The tuffs possessed abundant $SiO_2+Al_2O_3$ on chemical composition and plentiful content of amorphous phase on rock texture. The pozzolanic reaction degrees of the tuffs in the tuff/cement pastes were gradually increased with prolongation of curing time. The consistency of CH consumption and pozzolanic reaction degree was revealed. Variation of the pozzolanic reaction degree was enhanced with the bond water content and relationship between them appeared to satisfy an approximating linear law. The fitting linear regression equation can be applied to mutual conversion between pozzolanic reaction degree and bond water content.

Durability and mechanical performance in activated hwangtoh-based composite for NOx reduction

  • Kim, Hyeok-Jung;Park, Jang-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.307-314
    • /
    • 2021
  • Activated hwangtoh (ACT) is a natural resource abundant in South Korea, approximately 15.0% of soil. It is an efficient mineral admixture that has activated pozzolanic properties through high-temperature heating and rapid cooling. The purpose of this study is to improve a curb mixture that can reduce NOx outside and investigate durability performance. To this end, mortar curb specimens were manufactured by replacing OPC with ACT. The ACT substitution ratios of 0.0, 10.0, and 25.0% were considered, and mechanical and durability tests on the curb specimens were conducted at 28 and 91 days of age. Steam curing was carried out for three days for the production of curbs, which was very effective to strength development at early ages. The reduction in strength at early ages could be compensated through this process, and no significant performance degradation was evaluated in the tests on chloride attack, carbonation, and freezing and thawing. The mortar curb with an ACT of 10.0~25.0% replacement ratio exhibited clear NOx reduction through photocatalytic (TiO2) treatment. This is due to the increase in physical absorption through surface absorption and the photocatalyst-containing TiO2 coating. In this study, the reasonable range of the ACT replacement ratio for NOx reduction was quantitatively evaluated through a comprehensive analysis of each test.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.