• Title/Summary/Keyword: Curing Characteristics

Search Result 794, Processing Time 0.026 seconds

Thermal Resistant Characteristics of Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒤채움재의 열저항 특성)

  • Oh, Gidae;Kim, Daehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.15-24
    • /
    • 2010
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM(Controlled Low Strength Materials) accelerated flow ability. But underground power utilities pipe backfill materials is also needed to have good thermal property that can dissipate the heat as rapidly as it is generated. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(Controlled Low Strength Materials) with accelerated flow ability for various conditions(water content, unit weight, void ratio, curing time) and to evaluate the applicability for backfill material of underground power utilities pipe. The test results of 16 specimens for thermal resistancy test showed good thermal property that maintained below $85^{\circ}C\;cm/W$.

The Strength and Environmental Friendly Characteristics of Non-chemical Accelerating Shotcrete (비약액계 급결성 숏크리트재의 강도특성과 친환경성)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • The shotcrete is a NATM technique as a major tunnel support for ground stability after tunnel excavation. Instead of a general concrete lining method, it is a trend for curtail of construction periods and reduction of construction expenses that required to use of the permanent shotcrete lining. This high-strength shotcrete is required to use as a permanent shotcrete lining. This brought out the solution of environmental pollution and harmfulness to human. Accordingly, in this study specimens for strength measurement were made to develop shotcrete possible to develop materials in early with cement mineral accelerator as NATM method construction. It was compared with existing shotcrete material, unconfined compression test, flexural strength test, antiwashout underwater test were experimented. The fish poison test was experimented to evaluate an influence of environment. As a results of the test, unconfined compressive strength and flexural strength were equivalent with 28-curing day strength of existing material. An antiwashout of research subject material was revealed excellently in antiwashout Underwater test. As a results of the fish poison, an evaluation research subject material was founded more environmentally friendly than existing shotcrete.

  • PDF

Effect of Using Vegetable Powders as Nitrite/Nitrate Sources on the Physicochemical Characteristics of Cooked Pork Products

  • Jeong, Jong Youn;Bae, Su Min;Yoon, Jiye;Jeong, Da Hun;Gwak, Seung Hwa
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.831-843
    • /
    • 2020
  • This study investigated the potential for using vegetable powders as a natural replacement for sodium nitrite and their effects on the physicochemical characteristics of alternatively cured pork products. We analyzed pork products subjected to four treatments: control (0.015% sodium nitrite), Chinese cabbabe powder (CCP) treatment (0.4% Chinese cabbage powder), radish powder (RP) treatment (0.4% radish powder), and spinach powder (SP) treatment (0.4% spinach powder). Among the vegetable powders prepared in this study, SP had the highest (p<0.05) nitrate content, while CCP had the lowest (p<0.05). The cooking yields from these treatments were not significantly different from each other. However, the products with vegetable powders had higher (p<0.05) pH and thiobarbituric acid reactive substances values than the control. Pork products with vegetable powders also showed lower CIE L values and higher CIE b values than the nitrite-added control. RP treatment had similar (p>0.05) CIE a values to the control, while SP treatment had the lowest (p<0.05) CIE a values. The residual nitrite content was lower (p<0.05) in the vegetable powder added pork products than in the control, although nitrosyl hemochrome and total pigment contents in the CCP and RP treatments were similar (p>0.05) to those in the control. The control, CCP, and RP treatments showed curing efficiencies greater than 80%, indicating that CCP and RP would be promising potential replacements for sodium nitrite. The results of this study suggest that RP may be a suitable natural replacement for sodium nitrite to produce alternatively cured meat products, compared to other leafy vegetable powders.

A Study on Transparency and Characteristics of Natural Adhesives Made of Urushiol and Glue (우루시올과 아교를 배합한 천연 접착제의 투명성 및 접착 특성 연구)

  • Kim, Eun Kyung;Ahn, Sun Ah;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.115-123
    • /
    • 2015
  • This study aims to increase the transparency of the natural adhesives made with lacquer and glue. For the purpose, samples were prepared by mixing urushiol with glue in varied proportion and the characteristics and adhesive properties were investigated. By adding glue on urushiol, IR spectra of the natural adhesives became similar to that of glue as the N-H band related with protein of glue increased, while that of methylene C-H bond related to urushiol decreased. Samples were dried within a day and maintained a bright color without blackening by oxidation during the curing process. The natural adhesives with urushiol and glue showed various range of viscosity and tensile shear strength as Cemedine C or Epoxy resin according to mixing ratio. In addition, the sample of mixing ratio of 6:4 showed bright and transparency in appearance and tensile shear strength similar to that of Araldite AY103-1/HY956 for earthenware layer.

Analysis of Settlement Characteristics and Strength of Cement Mixing Ratio for a Backfill Material at a Railway Abutment (철도교대 뒤채움재료의 시멘트 혼합 비율에 따른 강도 및 침하특성 분석)

  • Yang, Sang-Beom;Choi, Chan-Yong;Kim, Nak-Kyung;Kim, Tae-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.29-36
    • /
    • 2016
  • Backfill materials of rail abutment were commonly composed with cement treated aggregate, general aggregate and soil. The friction angle of cement treated aggregate increased up to $40^{\circ}$ or more due to strength enhancement. However, $30^{\circ}{\sim}35^{\circ}$ of friction angle was typically applied for in-situ condition. This phenomenon could cause over-designing, therefore, it is essential to determine reasonable material properties of cemented treated aggregate. In this study, a series of CBR tests and circular model tests have been conducted for cement treated aggregate, while changing cement mixing ratio. Based on test results, characteristics of settlement and strength have been analyzed quantitatively. The settlement of cement treated aggregate decreased with the number of cyclic loading and aging period. In addition, The strength increment ratio in CBR test increased up to 13~16 times at 28 days aging.

Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives (주기적인 반복 열하중이 패키징된 FBG 센서 신호 특성에 미치는 영향)

  • Kim, Heonyoung;Kang, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.313-319
    • /
    • 2017
  • Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

A Study on the Initial Shear Strength Characteristics of Sudden Gelation Grout (순결형 그라우트의 초기 전단강도 특성에 대한 연구)

  • Heo, Hyung-Seok;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.33-44
    • /
    • 2020
  • In order to analyze the shear strength characteristics of the grout with sudden gelation in the pre-hardening state, the viscosity of the mixture and the indoor vane shear test were performed. The grout was prepared according to the water-cement (w/c) ratio and the shear strength test was conducted. The plastic-state shear strength of grout was affected by the w/c ratio, so the lower the w/c ratio, the higher the initial shear strength was, and the longer the curing time was, the higher the shear strength was. The maximum shear strength occurred at the faster rotation angle as the higher shear strength was developed, and the lower shear strength occurred at the larger rotation angle. In addition, it was confirmed that the pre-hardening grout rapidly decreased in strength after the maximum shear strength was gained, and converged at a certain level after the rotation angle of the vane blade was about 70° to 90°.

Carbonation Reaction and Strength Development of Air Lime Mortar with Superplasticizer (고성능 감수제가 혼입된 기경성 석회 모르타르의 탄산화 반응 및 강도발현 특성)

  • Kang, Sung-Hoon;Hwang, Jong-Kook;Kwon, Yang-Hee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.179-186
    • /
    • 2019
  • Air lime is a traditional building material of Korea. It had been used in roofs, walls, floors and masonry joints of traditional buildings until the advent of Portland cement. However, due to its low strength and durability, the lime is currently avoided as a repair or restoration material for the preservation of architectural heritage. Furthermore, due to the current practice of using hydraulic materials such as Portland cement, understanding of the material characteristics of air lime is very poor in practice. In this context, this study intended to improve the mechanical properties of the air lime mortar by reducing water contents, and also the carbonation reaction of the mortar was quantitatively evaluated to clearly understand the characteristics of this material. Accordingly, air lime mortar with a water-to-binder ratio of 0.4 was manufactured using polycarboxylate-type superplasticizer. During the 7 days of sealed curing period, the mortar did not harden at all. In other words, there was no reaction required for hardening since it could not absorb carbon dioxide from the atmosphere. However, once exposed to the air, the compressive strength of the mortar began to rapidly increase due to the carbonation reaction, and the strength increased steadily until the 28th day; after then, the strength development was significantly slowed down. On the 28th day, the mortar exhibit a compressive strength of about 5 MPa, which is equivalent to the European standard regarding strength of hydraulic lime used for preservation of architectural heritage.

Studies on the Durable Characteristics of Self-Healing Concrete with High Water-Tightness for Artificial Ground (인공지반용 고수밀 기반 자기치유성 콘크리트의 내구특성에 관한 연구)

  • Song, Tae-Hyeob;Park, Ji-Sun;Kim, Byung-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.199-206
    • /
    • 2019
  • Experimental study on the durability characteristics to examine the feasibility of concrete with high water-tightness and self-healing performance to minimize maintenance of concrete for artificial ground is as follows. 1) When blending agent, swelling agents, and curing accelerator were added on the ternary system cement with blast-furnace slag fine particles and fly ash to give a self-healing property, higher blending strengths by 82% at design standard strength of 24MPa and by 74% at design strength of 30MPa, respectively could be obtained. 2) The permeability test for the specimens having high water-tightness and no shrinkage showed that the permeability was reduced at maximum of 98%. However, the permeability was decreased as the design strength was increased, showing the reduction rate of 87% at the design strength of 50MPa. 3) The depth of carbonation of blast-furnace slag and fly ash was increased in all the specimens compared with those of OPC only. However, as the material age was increased, carbonation penetration depth was decreased compared with the reference blend. 4) Compared with the reference blending using only OPC, the freeze-thaw resistance was higher in the case of blending with 40% of blast-furnace slag and 10% of fly ash at the design standard strength of 50MPa. In addition, the freeze-thaw resistance in general was superior in the design standard strength of 50MPa with the lower water-binder ratio (W/B) as compared with the design standard strength of 24MPa and 30MPa with the high water-binder ratios.

Factors Influencing Characteristics of Sand Core for Water Jacket in Automotive Cylinder Blocks Casting (자동차 실린더 블록 주조에서 워터 자켓용 샌드 코어 특성에 영향을 미치는 인자)

  • Kim, Ki-Jun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.185-191
    • /
    • 2021
  • The characteristics of the foundry sand were analyzed for water jacket core required to prevent structural deformation from the heat generated in the cylinder bore during the casting of the cylinder block of an automobile. The sand core tensile strength tester, AFS-GFN, and optical microscope were used to evaluate the its properties. If the SiO2 content is high in the foundry sand, the dimensional defects and veining defects occur due to high temperature expansion. Also, if it is too low, the core breakage, porosities, chemical burn-on defects occur. The particle size index and grain shape influenced the core strength and resin consumption, resulting in fluctuations in defect types. The higher the alkalinity of the dried sand, the lower the core strength. And the more basic, the lower the core strength. At the resin content of 1.6~1.8%, the increase in core strength after 1 hour curing was approximately at its maximum.