• Title/Summary/Keyword: Curcuminoids

Search Result 35, Processing Time 0.019 seconds

Antibacterial Activity and Identification of the Active Compound from Tumeric Extract (울금색소 추출물의 항균성과 물질분리 동정)

  • 한신영;최석철
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • To identify the antimicrobial activity, of tumeric and its active compound tumeric was fractionated into four groups dichloromethane extract, hexane fraction, methanol soluble fraction and residue's extract. They were tested for antibacterial activity against E. coil and S. aureus and the methanol soluble fraction was found lo be the most active fraction. Compound I, II and III were isolated from TLC and silica gel column chromatography in the methanol soluble fraction. These compounds were analyzed by $^1H-NMR\;and\;^{13}C-NMR$ spectra and identified as curcumin I, II and III. They were also tested for antimicrobial activity against E. coli and S. aureus. Curcumin I was the must active curcuminoids due to the phenolic and methoxyl$(OCH_3)$ moiety in the same molecular structure.

Bioactivity Analysis of Curcuminoids from Turmeric using On-line Screening HPLC-ABTS (On-line Screening HPLC-ABTS를 이용한 강황으로부터 Curcuminoids의 생물활성 분석)

  • Choi, Sun Do
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.137-139
    • /
    • 2013
  • Free radical scavengers in the bisdemethoxycurcumin (BDMC), demethoxycurcumin (DMC) and curcumin of turmeric (Curcuma longa) were screened, identified, quantified and isolation using coupled off-line-2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and on-line screening high-performance liquid chromatography (HPLC)-ABTS assay. There was a very small margin of error between the off-line-ABTS method and the on-line screening HPLC-ABTS method.

Extraction properties and chemical stability of turmeric pigments in salt, sucrose, and acetic acid preservation (염, 당, 산 침지조건에서 심황색소의 추출특성 및 화학적 특성 변화)

  • Kang, Smee;Sung, Yunkyung;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • Turmeric pigments have been used as coloring agents and functional ingredients. In this study, the extraction property and chemical stability of the pigments were evaluated in several preservative solutions containing NaCl, sucrose, and acetic acid. After 72 h of infusion, the protein and polyphenol levels and antioxidant activity of the turmeric extracts in the solutions were less pronounced than those in water. Acetic acid (12%) was more efficient at extracting curcuminoids from turmeric than water, NaCl (20%), or sucrose (25%). Curcumin was highly abundant in all solutions. The relative yield of bisdemethoxycurcumin (BMC) was the highest in acetic acid, whereas that of curcumin was highest in NaCl and sucrose solutions. Curcuminoids were relatively stable in sucrose and acetic acid; among them, BMC had the highest stability. The stability of the curcuminoid solution decreased based on the increase in NaCl content, whereas it was significantly enhanced in sucrose and acetic acid. The observations from this study can be applied to the processing and storage of turmeric-derived products in these preservative agents.

Studies on Animal Models of Food Allergy (식품알레르기 연구를 위한 동물모델의 개발)

  • 주향란
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.553-562
    • /
    • 1998
  • Food allergy is defined as an immunologically-mediated adverse reaction to food.The food allergy as a clinical entity has been recognized for many years, although there is yet no general consensus as to the incidence of this syndrome. One difficulty in studying food allergies has been the lock of a reasonable animal model in which reactions could be induced by orally administrating foods. It has been generally accepted that the initial target for an immediate reaction to food is the mast cells, within the gastronitestinal mucosa, and such cells are sensitize in vivo by food-specific immunoglobulin(Ig) E. Degranulation of these cells facilitates the entry of an antigenic epitope into the lymphatic system and blood stream, thereby causing further degranulation of the mast cells and basophils throughout the boy. Accordingly, the author attempted to develop an animal model that is indicative of evaluating IgE-mediated immediate hypersensitivity. It is also necessary to evaluate the effects of nutritional envioronments on dietary protein-dependent allergy and the regulatory mechanisms of dietary fats on IgE-mediated immune response. In this review, animal models to evaluate a food ingredient, effects of dietary fats and curcuminoids, milk whey protein hydrolysates on allergic reaction, and effect of dietary fat in splenic immune cells are presented.

  • PDF

Role of Curcuma longa, a traditional ayurvedic medicinal plant, in diabetes

  • Ponnusamy, Sudha;Zinjarde, Smita;Bhargava, Shobha;Kumara, Ameeta Ravi
    • CELLMED
    • /
    • v.2 no.4
    • /
    • pp.31.1-31.7
    • /
    • 2012
  • Curcuma longa belongs to the family Zingiberaceae and can be found in the tropical and subtropical regions of the world. It is widely used in Asiatic countries, especially India and South East Asia where it is cultivated commercially as a condiment. Its rhizomes exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacterial, antioxidant effects, nematocidal activities, antiproliferative and antiangiogenic activities and are of pharmaceutical importance. Another relevant medicinal property exhibited by it is antidiabetic property which is reviewed here. Studies on the efficacy of crude C.longa extracts against type 2 diabetes in murine models reveal that it demonstrates a hypoglycemic effect by lowering the blood glucose levels under in vivo conditions. Clinical studies have revealed the safety of curucmin (major principle component exhibiting pharmaceutical properties from C.longa) on humans but with very low bioavailability. In view of its effective hypoglycemic effect and its low bioavailability, further studies are needed for the characterization of the bioactive principles and formulating the development of C.longa extracts as a novel anti-diabetic therapeutic agent.

Demethoxycurcumin from Curcuma longa Rhizome Suppresses iNOS Induction in an in vitro Inflamed Human Intestinal Mucosa Model

  • Somchit, Mayura;Changtam, Chatchawan;Kimseng, Rungruedi;Utaipan, Tanyarath;Lertcanawanichakul, Monthon;Suksamrarn, Apichart;Chunglok, Warangkana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1807-1810
    • /
    • 2014
  • Background: It is known that inducible nitric oxide synthase (iNOS)/nitric oxide (NO) plays an integral role during intestinal inflammation, an important factor for colon cancer development. Natural compounds from Curcuma longa L. (Zingiberaceae) have long been a potential source of bioactive materials with various beneficial biological functions. Among them, a major active curcuminoid, demethoxycurcumin (DMC) has been shown to possess anti-inflammatory properties in lipopolysaccharide (LPS)-activated macrophages or microglia cells. However, the role of DMC on iNOS expression and NO production in an in vitro inflamed human intestinal mucosa model has not yet been elucidated. This study concerned inhibitory effects on iNOS expression and NO production of DMC in inflamed human intestinal Caco-2 cells. An in vitro model was generated and inhibitory effects on NO production of DMC at 65 ${\mu}M$ for 24-96 h were assessed by monitoring nitrite levels. Expression of iNOS mRNA and protein was also investigated. DMC significantly decreased NO secretion by 35-41% in our inflamed cell model. Decrease in NO production by DMC was concomitant with down-regulation of iNOS at mRNA and protein levels compared to proinflammatory cytokine cocktail and LPS-treated controls. Mechanism of action of DMC may be partly due to its potent inhibition of the iNOS pathway. Our findings suggest that DMC may have potential as a therapeutic agent against inflammation-related diseases, especially in the gut.

Curcumin Derivatives Inhibit the Formation of Jun-Fos-DNA Complex Independently of their Conserved Cysteine Residues

  • Park, Chi-Hoon;Lee, Ju-Hyung;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.474-480
    • /
    • 2005
  • Curcumin, a major active component of turmeric, has been identified as an inhibitor of the transcriptional activity of activator protein-1 (AP-1). Recently, it was also found that curcumin and synthetic curcumin derivatives can inhibit the binding of Jun-Fos, which are the members of the AP-1 family, to DNA. However, the mechanism of this inhibition by curcumin and its derivatives was not disclosed. Since the binding of Jun-Fos dimer to DNA can be modulated by redox control involving conserved cysteine residues, we studied whether curcumin and its derivatives inhibit Jun-Fos DNA binding activity via these residues. However, the inhibitory mechanism of curcumin and its derivatives, unlike that of other Jun-Fos inhibitors, was found to be independent of these conserved cysteine residues. In addition, we investigated whether curcumin derivatives can inhibit AP-1 transcriptional activity in vivo using a luciferase assay. We found that, among the curcumin derivatives examined, only inhibitors shown to inhibit the binding of Jun-Fos to DNA by Electrophoretic Mobility Shift Assay (EMSA) inhibited AP-1 transcriptional activity in vivo. Moreover, RT-PCR revealed that curcumin derivatives, like curcumin, downregulated c-jun mRNA in JB6 cells. These results suggest that the suppression of the formation of DNA-Jun-Fos complex is the main cause of reduced AP-1 transcriptional activity by curcuminoids, and that EMSA is a suitable tool for identifying inhibitors of transcriptional activation.

Chemopreventive Potential of an Ethyl Acetate Fraction from Curcuma Longa is Associated with Upregulation of p57kip2 and Rad9 in the PC-3M Prostate Cancer Cell Line

  • Rao, K.V.K.;Samikkannu, T.;Dakshayani, K.B.;Zhang, X.;Sathaye, S.S.;Indap, M.A.;Nair, Madhavan P.N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.1031-1038
    • /
    • 2012
  • Background: Turmeric ($Curcuma$ $longa$) has been shown to possess anti-inflammatory, antioxidant and antitumor properties. However, despite the progress in research with $C.$ $longa$, there is still a big lacuna in the information on the active principles and their molecular targets. More particularly very little is known about the role of cell cycle genes $p57^{kip2}$ and Rad9 during chemoprevention by turmeric and its derivatives especially in prostate cancer cell lines. Methods: Accordingly, in this study, we have examined the antitumor effect of several extracts of $C.$ $longa$ rhizomes by successive fractionation in clonogenic assays using highly metastatic PC-3M prostate cancer cell line. Results: A mixture of isopropyl alcohol: acetone: water: chloroform: and methanol extract of $C.$ $longa$ showed significant bioactivity. Further partition of this extract showed that bioactivity resides in the dichloromethane soluble fraction. Column chromatography of this fraction showed presence of biological activity only in ethyl acetate eluted fraction. HPLC, UV-Vis and Mass spectra studies showed presence three curcuminoids in this fraction besides few unidentified components. Conclusions: From these observations it was concluded that the ethyl acetate fraction showed not only inhibition of colony forming ability of PC-3M cells but also up-regulated cell cycle genes $p57^{kip2}$ and Rad9 and further reduced the migration and invasive ability of prostate cancer cells.

Comparison of Inhibitory Potency of Various Antioxidants on the Activation of BV2 Microglial Cell Lines Induced by LPS

  • Kong, Pil-Jae;Park, Jong-Ik;Kwon, Oh-Yoon;Han, Yoon-Hee;Kim, Soo-Young;Lee, Su-Nam;Son, Hee-Jeong;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Antioxidant properties have been proposed as a mechanism for the putative anti-inflammatory effects of phenolic compounds. To reveal the relationship between antioxidant activity and anti-inflammatory effects of various antioxidants, we measured 1, 1-diphenyl-2-picryhydrazyl(DPPH)-reducing activity and examined the inhibitory effects on LPS-induced inflammation-related gene expression in the BV2 microglial cell line. Lipopolysaccharide(LPS)(0.2 ${\mu}g/ml$) was used with or without antioxidants to treat cells, and the regulation of iNOS and cytokine gene expression was monitored using an RNase protection assay(RPA). Although, all tested antioxidants had similar DPPH-reducing activity and inhibited nitrite production, but the curcuminoid antioxidants(ferulic acid, caffeic acid, and curcumin) inhibited LPS-induced gene expression(iNOS, $TNF-\alpha,\;IL-1{\beta}$, IL-6, and IL-1 Ra) in a concentration-dependent manner. Other tested antioxidants did not exhibit the same effects; N-acetylcysteine(NAC) only began to suppress $IL-1{\beta}$ gene expression just below the concentration at which cytotoxicity occurred. Moreover, the antioxidant potency of curcuminoids appeared to have no correlation with anti-inflammatory potency. Only curcumin could inhibit LPS-induced microglial activation at a micromolar level. These data suggest that curcumin may be a safe antioxidant possessing anti-inflammatory activity.

Effect of salicylic acid and yeast extract on curcuminoids biosynthesis gene expression and curcumin accumulation in cells of Curcuma zedoaria

  • Lan, Truong Thi Phuong;Huy, Nguyen Duc;Luong, Nguyen Ngoc;Quang, Hoang Tan;Tan, Trinh Huu;Thu, Le Thi Anh;Huy, Nguyen Xuan;Loc, Nguyen Hoang
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.172-179
    • /
    • 2019
  • The aim of this study is to evaluate the effect of yeast extract (YE) and salicylic acid (SA) on the expression of curcuminoid-biosynthesis genes (CzDCS and CURS1-3), and accumulation of curcumin in Curcuma zedoaria cell cultures. The results showed that, in cells treated with YE or SA, the expression levels of curcuminoid genes were 1.14- to 3.64-fold higher than the control (untreated cells), in which the YE exhibited a stronger effect in comparison with SA. Curcumin accumulation also tended to be similar to gene expression, curcumin contents in YE- or SA-treated cells were 1.61- to 2.53-fold higher than the control. The SA treatment at the fifth day of culture stimulated the curcumin accumulation and expression in all four genes compared to that at the beginning. While the YE treatments gave different results, the CzCURS1 and CzCURS3 genes were expressed strongly in cells that were treated at the beginning. However, the CzDCS and CzCURS2 genes showed the opposite expression pattern, they were activated strongly in the treatments at day five of the culture. However, the content of curcumin reached its maximum value on the fifth day of culture in all investigations.