• Title/Summary/Keyword: Cumulative heat

Search Result 72, Processing Time 0.022 seconds

An interpretable machine learning approach for forecasting personal heat strain considering the cumulative effect of heat exposure

  • Seo, Seungwon;Choi, Yujin;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.

Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(1) :균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.

Development of an Integrated Calorimeter Using Temperature Control Signals of a Bioreactor and On-line Measurement of Metabolic Heat of a Microbial Cultivation (발효조의 온도제어 신호를 이용한 직접열량계의 개발 및 대사열량의 온라인 측정)

  • Hong, Geon-Pyo;Heo, Won
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.543-549
    • /
    • 1999
  • For development of an integrated calorimetric bio-reactor to measure the metabolic heat dissipated during cell growth, a 5 liter jar fermenter was modified to measure the pulse length of automatic temperature control signals to set heater on and off, and the to send them to computer to calculate the cumulative heat supplied. Cumulative heats for the calorimetric reactor in the absence of cell growth, were measured with varying conditions. The heat loss by the aeration was 30.9 kJ/vvm and the loss to ambient air was 10.5 kJ/L/hr/$^{\circ}C$. Cumulative heat was measued within $\pm$0.2% when testing with a small electri heater submerged in the reactor. Metabolic heat was measured to be 0.76 and 0.76 and 11.4kJ per g consumption of glucose during cultivation of S. cerevisiae and E. coli, respectively.

  • PDF

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei;Zhao, Jun
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

Dissimilar Friction Welding of Elevated Temperature Materials for Pressure Vessels and Its AE Evaluation (압력용기용 고온재의 이종재 마찰용접과 AE평가)

  • Kong, Y.S.;Lee, Y.T.;Yoo, I.J.;Oh, S.K.;Lim, M.B.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.68-73
    • /
    • 2002
  • An opportunity to use the elevated temperature has been recently increasing in various elements of heat facilities or machines such as heat exchanger tubes, pressure vessels, engines of aircraft, boilers and turbines in power plants, and nuclear reactor components, etc. as machinery industry develops. Thus, the development of such elevated-temperature heat-resisting materials and the studies on their elevated-temperature materials friction welding, creep design and analysis have been considered as an important and needful fact. In this paper, friction welding optimization for 1Cr0.5Mo to STS304 and AE applications for the weld quality evaluation were investigated. The important results of this study are as follows : The techniques for dissimilar friction welding optimization of the elevated temperature materials 1Cr0.5Mo and STS304 and its real-time weld quality evaluation by AE were developed, considering on both strength and toughness. Quantitative relationship was identified among welding condition, weld quality and cumulative AE counts.

  • PDF

FATIGUE ANALYSIS OF A REACTOR PRESSURE VESSEL FOR SMART

  • Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.683-688
    • /
    • 2012
  • The structural integrity of mechanical components during several transients should be assured in the design stage. This requires a fatigue analysis including thermal and stress analyses. As an example, this study performs a fatigue analysis of the reactor pressure vessel of SMART during arbitrary transients. Using heat transfer coefficients determined based on the operating environments, a transient thermal analysis is performed and the results are applied to a finite element model along with the pressure to calculate the stresses. The total stress intensity range and cumulative fatigue usage factor are investigated to determine the adequacy of the design.

Cumulative Mortality in Striped Beakperch, Oplegnathus fasciatus Infected with Red Sea Bream Iridovirus (RSIV) at Different Water Temperature and Identification of Heat Shock Protein 70 (수온별 Red Sea Bream Iridovirus (RSIV) 인위감염에 따른 돌돔의 누적폐사 및 Heat Shock Protein (HSP) 70의 동정)

  • Kim, Seok-Ryel;Jeong, Byeong-Mun;Jung, Sung-Ju;Kitamura, Shin-Ichi;Kim, Du-woon;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • This study evaluates the pathogenicity in striped beakperch, Oplegnathus fasciatus infected with red sea bream iridovirus (RSIV) at different water temperature (17°C, 20°C, 25°C and 27°C). When the fish group was infected with RSIV at 17°C and 20°C, cumulative mortality did not show any significant difference with control group. In contrast, the case at 25°C and 27°C, cumulative mortality reached more than 80%. However, RSIV was detected from all of the fish in each temperature. To confirm a relationship between temperature change and heat shock protein (HSP), partial HSP70 cDNA was isolated from striped beakperch.

Fluctuation of Temperature Induces Pathogenicity of Streptococcus iniae and Changes of Immunology Related Genes of Korean Rockfish, Sebastes schlegeli

  • EunYoung Min;Seon-Myeong Jeong;Hyun-Ja Han;Miyoung Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.420-429
    • /
    • 2023
  • This study was designed to examine the immune response in Korean rockfish during water temperature fluctuation and to elucidate the factors contributing to streptococcal pathogenesis in cultured Korean rockfish, S. schlegeli. We investigated cumulative mortality against Streptococcus iniae (FP5228 strain) infection in the exposed Korean rockfish (39.7±5.8 g) to environmentally relevant temperature (Control, 23℃; High temperature, 28℃ and 23℃ and 28℃ with 12 hours interval exchange, 23↔28℃) for 48 hours. Also, the expression of the mRNA related to the immune response genes (heat shock protein 70, interleukin1β, lysozyme g-type and thioredoxin-like 1) were measured in spleen and head kidney by real-time PCR analysis in the exposed fish to thermal stress. In this study, the combined stress with bacterial challenge in fishes exposed to thermal stress lowered the survival rate than that of control (23℃). The cumulative mortality in the group of control, 28℃ and 23↔28℃ was 24%, 24% and 40% (P<0.05), respectively. Also, thermal stress modulated the mRNA level of immune related genes; heat shock protein 70, interleukin-1β, lysozyme g-type and thioredoxin-like 1 in Korean rockfish. The present study indicates that a high and sudden water temperature change affect immune responses and reduce the disease resistance in Korean rockfish.

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.