Browse > Article
http://dx.doi.org/10.12989/sem.2017.62.2.225

A cumulative damage model for extremely low cycle fatigue cracking in steel structure  

Huanga, Xuewei (School of Mechanics and Engineering Science, Zhengzhou University)
Zhao, Jun (School of Mechanics and Engineering Science, Zhengzhou University)
Publication Information
Structural Engineering and Mechanics / v.62, no.2, 2017 , pp. 225-236 More about this Journal
Abstract
The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.
Keywords
cumulative damage model; structural steel; extremely low cycle fatigue; ductile fracture; beam-column welded joint;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pirondi, A., Bonora, N., Steglich, D., Brocks, W. and Hellmann, D. (2006), "Simulation of failure under cyclic plastic loading by damage models", Int. J. Plast., 22(11), 2146-2170.   DOI
2 Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solid., 17(3), 201-217.   DOI
3 Ristinmaa, M. (1997), "Void growth in cyclic loaded porous plastic solid", Mech. Mater., 26(4), 227-245.   DOI
4 Rousselier, G. (1987), "Ductile fracture models and their potential in local approach of fracture", Nucl. Eng. Des., 105(1), 97-111.   DOI
5 Steglich, D., Pirondi, A., Bonora, N. and Brocks, W. (2005), "Micromechanical modelling of cyclic plasticity incorporating damage", Int. J. Solid. Struct., 42(2), 337-351.   DOI
6 Tong, L., Huang, X., Zhou, F. and Chen, Y. (2016), "Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints", J. Constr. Steel Res., 119, 98-112.   DOI
7 Xue, L. (2008), "A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading", Int. J. Fatigue, 30(10-11), 1691-1698.   DOI
8 Zhou, H., Wang, Y., Shi, Y., Xiong, J. and Yang, L. (2013), "Extremely low cycle fatigue prediction of steel beam-to column connection by using a micro-mechanics based fracture model", Int. J. Fatigue, 48(2), 90-100.   DOI
9 Zhou, H., Wang, Y., Yang, L. and Shi, Y. (2014), "Seismic lowcycle fatigue evaluation of welded beam-to-column connections in steel moment frames through global-local analysis", Int. J. Fatigue, 64(7), 97-113.   DOI
10 Pirondi, A. and Bonora, N. (2003), "Modeling ductile damage under fully reversed cycling", Comput. Mater. Sci., 26, 129-141.   DOI
11 Bleck, W., Dahl, W., Nonn, A., Amlung, L., Feldmann, M., Schafer, D. and Eichler, B. (2009), "Numerical and experimental analyses of damage behaviour of steel moment connection", Eng. Fract. Mech., 76(10), 1531-1547.   DOI
12 Amiri, H.R., Aghakouchak, A.A., Shahbeyk, S. and Engelhardt, M.D. (2013), "Finite element simulation of ultra low cycle fatigue cracking in steel structures", J. Constr. Steel Res., 89, 175-184.   DOI
13 Bao, Y. and Wierzbicki, T. (2004), "On fracture locus in the equivalent strain and stress triaxiality space", Int. J. Mech. Sci., 46(81), 81-98.   DOI
14 Bao, Y. and Wierzbicki, T. (2005), "On the cut-off value of negative triaxiality for fracture", Eng. Fract. Mech., 72(7), 1049-1069.   DOI
15 Besson, J. and Guillemer-Neel, C. (2003), "An extension of the Green and Gurson models to kinematic hardening", Mech. Mater., 35(1-2), 1-18.   DOI
16 Besson, J., Steglich, D. and Brocks, W. (2001), "Modeling of crack growth in round bars and plane strain specimens", Int. J. Solid. Struct., 38(46-47):8259-8284.   DOI
17 Bonora, N. (1997), "A nonlinear CDM model for ductile failure", Eng. Fract. Mech., 58(1), 11-28.   DOI
18 Chao, S., Khandelwal, K. and El-Tawil, S. (2006), "Ductile web fracture initiation in steel shear links", J. Struct. Eng., 132(8), 1192-1200.   DOI
19 Dufailly, J. and Lemaitre, J. (1995), "Modeling very low cycle fatigue", Int. J. Damage Mech., 4(2), 153-170.   DOI
20 Code for seismic design of buildings (2010), GB 50011-2010, China Architectura & Building Press, Beijing.
21 Hancock, J.W. and Mackenzie, A.C. (1976), "On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states", J. Mech. Phys. Solid., 24(s2-3), 147-160.   DOI
22 Huang, X., Tong, L., Zhou, F. and Chen, Y. (2013), "Prediction of fracture behavior of beam-to-column welded joints using micromechanics damage model", J. Constr. Steel Res., 85, 60-72.   DOI
23 Kanvinde, A.M. and Deierlein, G.G. (2007), "Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue", J. Struct. Mech., 133(6), 701-712.
24 Kamaya, M. (2010), "Fatigue properties of 316 stainless steel and its failure due to internal cracks in low-cycle and extremely low-cycle fatigue regimes", Int. J. Fatigue, 32(7), 1081-1089.   DOI
25 Kanvinde, A.M. and Deierlein, G.G. (2006a), "Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels", J. Struct. Eng., 132(12), 1907-1918.   DOI
26 Kanvinde, A.M. and Deierlein, G.G. (2006b), "Prediction of ductile fracture in steel connections using SMCS criterion", J. Struct. Eng., 132(2), 171-181.   DOI
27 Kanvinde, A.M. and Deierlein, G.G. (2008), "Validation of cyclic void growth model for fracture initiation in blunt notch and dogbone steel specimens", J. Struct. Eng., 134(9), 1528-1537.   DOI
28 Kiran, R. and Khandelwal, K. (2014), "Gurson model parameters for ductile fracture simulation in ASTM A992 steels", Fatigue Fract. Eng. Mater. Struct., 37(2), 171-183.   DOI
29 Kuwamura, H. (1998), "Fracture of steel during an earthquakestate-of-the-art in Japan", Eng. Struct., 20(4-6), 310-322.   DOI
30 Kuroda. M. (2002), "Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model", Int. J. Fatigue, 24(6), 699-703.   DOI
31 Leblond, J.B., Perrin, G. and Devaux, J. (1995), "An improved Gurson-type model for hardenable ductile metals", Eur. J. Mech. A, 14(4), 499-527.
32 Mahin, S.A. (1998), "Lessons from damage to steel buildings during the Northridge earthquake", Eng. Struct., 20(4), 261-270.   DOI
33 Li, L., Wang, W., Chen, Y. and Lu, Y. (2015), "Effect of beam web bolt arrangement on catenary behaviour of moment connections", J. Constr. Steel Res., 104, 22-36.   DOI
34 Liao, F.F., Wang, W. and Chen, Y.Y. (2012), "Parameter calibrations and application of micromechanical fracture models of structural steels", Struct. Eng. Mech., 42(2), 153-174.   DOI
35 Mackenzie, A.C., Hancock, J.W. and Brown, D.K. (1977), "On the influence of state of stress on ductile failure initiation in high strength steels", Eng. Fract. Mech., 9(1), 167-188.   DOI
36 Myers, A.T. (2009b), "Testing and probabilistic simulation of ductile fracture initiation in structural steel components and weldments", Stanford University, California.
37 Myers, A.T., Kanvinde, A.M., Deierlein, G.G. and Fell, B.V. (2009a), "Effect of weld details on the ductility of steel column baseplate connections", J. Constr. Steel Res., 65, 1366-1373.   DOI
38 Kiran, R. and Khandelwal, K. (2015), "A micromechanical cyclic void growth model for ultra-low cycle fatigue", Int. J. Fatigue, 70, 24-37.   DOI
39 Nip, K.H., Gardner, L., Davies, C.M. and Elghazouli, A.Y. (2010), "Extremely low cycle fatigue tests on structural carbon steel and stainless steel", J. Constr. Steel Res., 66(1), 96-110.   DOI