Multiple-count problem is occurred when rectangle objects span across several buckets. The CD histogram is a technique which selves this problem by keeping four sub-histograms corresponding to the four points of rectangle. Although It provides exact results with constant response time, there is still a considerable issue. Since it is based on a query window which aligns with a given grid, a number of errors nay be occurred when it is applied to real applications. In this paper, we propose selectivity estimation techniques using the generalized cumulative density histogram based on two probabilistic models : \circled1 probabilistic model which considers the query window area ratio, \circled2 probabilistic model which considers intersection area between a given grid and objects. Our method has the capability of eliminating an impact of the restriction on query window which the existing cumulative density histogram has. We experimented with real datasets to evaluate the proposed methods. Experimental results show that the proposed technique is superior to the existing selectivity estimation techniques. Furthermore, selectivity estimation technique based on probabilistic model considering the intersection area is very accurate(less than 5% errors) at 20% query window. The proposed techniques can be used to accurately quantify the selectivity of the spatial range query on rectangle objects.
A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating the acoustic mismatch between training and test environments, but also at reducing the discrepancy between the phonetic distributions of training and test speech data. The algorithm utilizes multiple class-specific reference and test cumulative distribution functions, classifies the noisy test features into their corresponding classes, and equalizes the features by using their corresponding class-specific reference and test distributions. Experiments on the Aurora 2 database proved the effectiveness of the proposed method by reducing relative errors by 18.74%, 17.52%, and 23.45% over the conventional histogram equalization method and by 59.43%, 66.00%, and 50.50% over mel-cepstral-based features for test sets A, B, and C, respectively.
A mismatch between the training and the test conditions often causes a drastic decrease in the performance of the speech recognition systems. In this paper, non-linear transformation techniques based on histogram equalization in the acoustic feature space are studied for reducing the mismatched condition. The purpose of histogram equalization(HEQ) is to convert the probability distribution of test speech into the probability distribution of training speech. While conventional histogram equalization methods consider only the probability distribution of a test speech, for noise-corrupted test speech, its probability distribution is also distorted. The transformation function obtained by this distorted probability distribution maybe bring about miss-transformation of feature vectors, and this causes the performance of histogram equalization to decrease. Therefore, this paper proposes a new method of calculating noise-removed probability distribution by using assumption that the CDF of noisy speech feature vectors consists of component of speech feature vectors and component of noise feature vectors, and this compensated probability distribution is used in HEQ process. In the AURORA-2 framework, the proposed method reduced the error rate by over $44\%$ in clean training condition compared to the baseline system. For multi training condition, the proposed methods are also better than the baseline system.
In this paper, we present a non-static color histogram method to retrieve clothing images that are similar to a query clothing. Given clothing area, our method automatically extracts major colors by using the octree-based quantization approach[16]. Then, a color palette that is composed of the major colors is generated. The feature of each clothing, which can be either a query or a database clothing image, is represented as a color histogram based on its color palette. We define the match color bins between two possibly different color palettes, and unify the color palettes by merging or deleting some color bins if necessary. The similarity between two histograms is measured by using the weighted Euclidean distance between the match color bins, where the weight is derived from the frequency of each bin. We compare our method with previous histogram matching methods through experiments. Compared to HSV cumulative histogram-based approach, our method improves the retrieval precision by 13.7 % with less number of color bins.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.3
/
pp.155-162
/
2014
In this paper, we propose an efficient shaking correction techniques for a moving vehicle image stabilization. The proposed shaking correction techniques was calculated cumulative histogram for the conversion and the separating information via color separation of video image frame of the input received. And it were to matching the histogram for match the color information as compensation result of the shaking vehicle video imaging. In this paper, the proposed the shaking correction techniques was obtained to the restoration result when compared to the existing shaking correction techniques that the smallest noise and better the naturalness of image through stabilization of luminance level and color level. Also, the imaging stabilization method was demonstrated the efficiency compared to other methods through to the real-time processing without the use of the memory.
Pyo, Sung-Kook;Park, Young-Soo;Lee, Gang Seung;Lee, Sang-Hun
Journal of the Korea Convergence Society
/
v.10
no.3
/
pp.15-22
/
2019
In this paper, we proposed a Hangeul detection method using structural features of histogram, consonant, and vowel to solve the problem of Hangul which is separated and detected consonant and vowel The proposed method removes background by using DoG (Difference of Gaussian) to remove unnecessary noise in Hangul detection process. In the image with the background removed, we converted it to a binarized image using a cumulative histogram. Then, the horizontal position histogram was used to find the position of the character string, and character combination was performed using the vertical histogram in the found character image. However, words with a consonant vowel such as '가', '라' and '귀' are combined using a structural characteristic of characters because they are difficult to combine into one character. In this experiment, an image composed of alphabets with various backgrounds, an image composed of Korean characters, and an image mixed with alphabets and Hangul were tested. The detection rate of the proposed method is about 2% lower than that of the K-means and MSER character detection method, but it is about 5% higher than that of the character detection method including Hangul.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.7
/
pp.4475-4481
/
2014
A histogram equalization method have been used traditionally for the image enhancement of low quality images. This uses the transformation function, which is a cumulative density function of an input image, and it has mathematically maximum entropy. This method, however, may yield whitening artifacts. This paper proposes the weighted histogram equalization method based on histogram equalization. It has Weber-Fechner's law for a human's vision characteristics, and a dynamic range modification to solve the problem of some methods, which yield a transformation function, regardless of the input image. Finally, the proposed transformation function was calculated using the weighted average of Weber-Fechner and the histogram equalization transformation functions in a modified dynamic range. The simulation results showed that the proposed algorithm effectively enhances the contrast in terms of the subjective quality. In addition, the proposed method has similar or higher entropy than the other conventional approaches.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.6
/
pp.87-95
/
1999
We propose a simulation model of 3-dimensional MPEG data over Asynchronous transfer Mode(ATM) networks. The model is based on a slice level and is named to Projected Vector Autoregressive(PVAR) model. The PVAR model is modeled using the Autoregressive(AR) model in order to meet the autocorrelation condition and fit the histogram, and maps real data by a projection function. For the projection function, we use the Cumulative Distribution Probability Function (CDPF), and the procedure is performed at each slice level. Our proposed model shows good performance in meeting the autocorrelation condition and fitting the histogram, and is found important in analyzing the performance of networks. In addiotion, we apply a smoothing method by which a periodic mean value. In general. the Quality of Service(QoS) depends on the Cell Loss Rate(CLR), which is related to the cell loss and a maximum delay in a buffer. Hence the proposed smoothing method can be used to improve the QoS.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.3
/
pp.1-8
/
2016
We propose an adaptive histogram stretching algorithm for application to a car's personal recorder. The algorithm was used for pre-processing to detect the license plate region in an image from a personal recorder. The algorithm employs a Probability Density Function (PDF) and Cumulative Distribution Function (CDF) to analyze the distribution diagram of the images. These two functions are calculated using an image obtained by sampling at a certain pixel interval. The images were subjected to different levels of stretching, and experiments were done on the images to extract their characteristics. The results show that the proposed algorithm provides less deterioration than conventional algorithms. Moreover, contrast is enhanced according to the characteristics of the image. The algorithm could provide better performance than existing algorithms in applications for detecting search regions for license plates.
The purpose of selectivity estimation is to maintain the summary data in a very small memory space and to minimize the error of estimated value and query result. In case of estimating selectivity for large spatial data, the existing works need summary information which reflect spatial data distribution well to get the exact result for query. In order to get such summary information, they require a much memory space. Therefore In this paper, we propose a new technique cumulative density wavelet Histogram, called CDW Histogram, which gets a high accurate selectivity in small memory space. The proposed method is to utilize the sub-histograms created by CD histogram. The each sub-histograms are used to generate the wavelet summary information by applying the wavelet transform. This fact gives us good selectivity even if the memory sire is very small. The experimental results show that the proposed method simultaneously takes full advantage of their strong points - gets a good selectivity using the previous histogram in ($25\%\~50\%$) memory space and is superior to the existing selectivity estimation techniques. The proposed technique can be used to accurately quantify the selectivity of the spatial range query in databases which have very restrictive memory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.