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A mismatch between the training and the test conditions often causes a drastic
decrease in the performance of the speech recognition systems. In this paper, non-linear
transformation techniques based on histogram equalization in the acoustic feature space
are studied for reducing the mismatched condition. The purpose of histogram
equalization(HEQ) is to convert the probability distribution of test speech into the
probability distribution of training speech. While conventional histogram equalization
methods consider only the probability distribution of a test speech, for noise—corrupted'
test speech, its probability distribution is also distorted. The transformation function
obtained by this distorted probability distribution maybe bring about miss-transformation
of feature vectors, and this causes the performance of histogram equalization to decrease.
Therefore, this paper proposes a new method of calculating noise-removed probability
distribution by using assumption that the CDF of noisy speech feature vectors consists of
component of speech feature vectors and component of noise feature vectors, and this
compensated probability distribution is used in HEQ process. In the AURORA-2
framework, the proposed method reduced the error rate by over 44% in clean training

condition compared to the baseline system. For multi training condition, the proposed

| methods are also better than the baseline system.

* Keywords : Histogram equalization, Cumulative density function, Robust speech recognition.
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1. Introduction

Noise robustness is one of major requirements for practical automatic speech
recognition systems. Typically, a high recognition accuracy can be obtained if there is
a good matching between the training and recognition conditions. In real world
applications, however, the acoustically same training and recognition- environments can
not be guaranteed.

The easiest and straightforward way to improve noise robustness is to attempt to
collect large amount of data from a wide rage of acoustic environments. Although this
so-called multi-environment training works reasonably well up to a certain limit, it is
obvious that the problem of noise robustness cannot be solved by simply collecting a
huge amount of training data. It is impossible to collect a database which covers all
possible usage environments. Furthermore, the use of large amounts of data often leads
to HMMs with large variances, and hence, the models do not provide a high
recognition accuracy in arbitrary environment. In addition to multi-environment training,
more sophisticated techniques have also been developed for improving the noise
robustness of speech recognition systems{1].

The methods proposed to make the speech recognition systems more robust against
the noise are mainly focused on the minimization of the mismatch caused by noise.
There are two broad categorized methods in order to overcome this problem. Some of
them so called normalization try to reduce the mismatch By transforming the acoustic
vectors. Another method based on adaptation tries to adapt the recognizer to noise
conditions in order to match the noisy speech representation with noise models.

The noise causes a distortion of the feature space which usually presents a
non-linear behavior. For instance, cepstral based representations suffer non-linear
distortions when the speech signal is affected by additive noise. Linear normalization
methods which are CMN|[2] (Cepstral Mean Normalization) and CMVN[1] (Cepstral
Mean and Variance Normalization) provide significant improvement for cepstral based
representation. However, these linear normalization methods have critical limitations due
to the non-linear distortion of noise. Methods oriented to compensation of the noise
effects over the speech representation such as widely used MFCC should consider
non-linear effects and should be able to estimate the non-linear transformation
providing the best estimation of the clean speech given the noisy speech. Several
histogram equalization-based approaches have been proposed in order to overcome this
non-linear distortion[3]-[5]. The main characteristic of HEQ is that this can compensate

higher moments in comparison with CMN and CMVN which compensate only two
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moments that are mean and variance.

The aim of HEQ-based methods is to find a transformation which converts the
probability distribution of a test speech into the probability distribution of training
speech. However, conventional histogram equalization methods consider only the
probability distribution of a test speech, but if a test speech is corrupted by noise, the
probability distribution of test feature vectors is distorted. This distorted probability
distribution causes the performance of histogram equalization to decrease. Hence, if the
distortion caused by noise is compensated in histogram equalization, the performance
of histogram equalization is better than conventional one. Therefore, we propose a new
histogram equalization method that uses a compensated probability distribution of a test
speech feature vectors by removing component of noise feature vectors from the CDF
value of noisy speech feature vectors.

This paper is organized as follows. In Section 2, we discuss the non-linear
transformations which is based on histogram equalization. Section 3 is devoted to the
proposed method which uses the compensated probability distribution which is
noise-removed probability distribution. In Section 4, experimental results are presented.

Finally, Section 5 presents conclusion.

2. Non-Linear Transformation
2.1 Histogram Equalization

In order to effectively compensate the non-linear effects, histogram equalization
(HEQ) techniques have been proposed[6]-[8]. The aim of these methods is to find a

transformation which converts the probability distribution of a test speech into the
probability distribution of training speech. It can be demonstrated that, if x(y)

transforms p (y) into p (x), then the cumulative histograms verify that
C,m= C.(x(y) ey
and therefore the transformation can be obtained from the target cumulative histogram

of feature vectors of test speech and the reference cumulative histogram for feature

vectors of the training speech as

() =C;'[C,(»] @
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The cumulative histogram-based transformation and block diagram are depicted in

<Fig. 1> and <Fig. 2>.
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<Figure 1> Principle of histogram equalization: Test data 4 are transformed such that the
CDF C ,(y ) of test data matches the CDF C (x) of training data
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<Figure 2> Block diagram of histogram equalization

2.2 Order Statistic-Based CDF [9]

For the histogram equalization, the cumulative distribution function (CDF) is
computed at every test utterance. More efficient algorithms can be formulated by
exploiting the relation between order statistics and the values of CDF. This relation
can be straightforwardly applied to construct a sample based estimate of the CDF.
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Especially when the number of sample data is small as a test utterances, this relation
can be useful.
At a utterance, the time sequence of cepstral coefficients in a particular dimension

is considered

Y:{yliy2»°'-9yT} (3)

Let us denote the order statistics of (3) by

YEY @SSy S TUSy (p @

Using the order statistics, an asymptotically unbiased point estimation of CDF can be
defined [10] as

Cc(="=05 =y 9T ®)

using (5) and (2), an estimationvof transformed value x(y) can be obtained as

() =C7C,m1=c; [HUFLE] ©

where #(y) denotes the rank of y that is obtained by counting the number of values

less than or equal to y in 7T values of cepstral coefficients. In this paper, the CDFs

of test data are calculated by using oder statistic-based CDF computation method.

3. Compensated Probability Distribution

If a test speech is corrupted by noise, the probability distribution of a test speech
feature vectors is also distorted. The performance of HEQ which uses this distorted
probability  distribution is decreased because this distorted distribution causes
transformation function of HEQ to be incorrect. If this distorted probability distribution
can be compensated, the HEQ with the compensated probability distribution has better

performance than conventional HEQ. To compensate this distorted probability
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distribution, we will expand a model of acoustical environment to CDF domain, and
compensate the distorted CDF by using simple assumption within the framework of
order statistic-based CDF computation.

<Figure 3> shows a commonly used model for the acoustical environment, which
assumes the speech signal x{s] is corrupted by additive noise 4[] and channel

noise  Ji[ m]

ym] = x[ m]* bl m] + nl m] (7

x[m] ——  A[m] yim]

n[m]

<Figure 3> A model of the acoustical environment

Equation (7) can be also presented using power spectral density (PSD)

| Y(w)| = | X(w)|| Hw)| %+ | N(w)| ®)

where | X(w)l. |H(w)|% |N(w)| and |Y(w)| are PSD of x{m]. W m] nlm]
and [ ], respectively. Taking natural logarithms on equation (8), we get

log | Y(w)| = log[ | X(w)l| H(w)| *+ | N(w)|] -
| N )|
| X(w)l| H w)| ®

= log| X(w)| + log| H(w)| 2+ log|1+

For brevity, we use x, h, n, and y, instead of log|X(w)|, log|H(w)|?%

“

log | Mw)| and log| Y(w)|, where subscript “/ ” denotes log-domain. After some

algebraic manipulation, equation (9) is

v, =x+h+log{l+exp(n,—x,—h)} (10)

In a similar way, we can present noisy environment in cepstral domain[11].
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y =% +h 4 Clog{1l +exp(C '(n .—x .~ h )} (1)

where subscript “c” representing cepstral domain, ( denoting DCT matrix, and C ~!
being inverse DCT matrix. From above observations, we find that corrupted speech

signal (or feature vector) y, regardless of its domain, is can be expressed as

y=x+ Ax,n,h) (12)

We will apply the equation (12) to the CDF of feature vectors. We can assume
that the CDF of noisy speech feature vectors consists of component of speech feature
vectors and component of non-linear part of speech, additive noise, and channel

distortion by using equation (12).

C,(»="TC.M+ T Ay (13)

There have been many methods to get noise information in cepstrum domain, but,
instead of using these sophisticate methods, we use a simple assumption that a few
frames in front of speech frames consist of channel distortion and additive noise, and
feature vectors from these frames are also feature vectors of channel distortion and

additive noise. If noise information is obtained by using above assumption, the

obtained C Ay) is not related with speech but related with additive noise and

channel distortion. So C ) can be estimated by using the distribution of the

ordered noise feature vectors and the above simple assumption as the following

equation.

AC Compen.(y) = AC x(y) =C y(y) - AC f(y)
(14)
AN =05 Ny
T T

where N ,,,.(y) is the number of noise features less than y. Within the framework

of order statistic-based CDF computation, N ,.,.(y) can be considered as the noise
factor that influences the CDF of clean speech feature vectors. Therefore, in equation

®), C com sen(y) is  noise-removed CDF of noisy speech feature vectors, y, because
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the noise factor is expelled from the CDF of noisy speech feature vectors. If the
"C Compen.(¥) is used in stead of C (y), the performance of HEQ will be increase

compared with conventional HEQ. Finally, transformation function for HEQ can be

obtained as

X robust( Y ) =

4. Experimental Result

In this paper, four feature vector normalization methods have been compared in
recognition experiments under noise conditions using AURORA-2 database and
task[12]. The task consists of the recognition of connected digits in English. The
speech is artificially corrupted at several SNRs with ten different conditions. The
recognition results at each SNR are averaged over all the kinds of noise.

Speech representation is based on MFCC parameterization. The speech signal,
sampled at 8kHz, is segmented into frames and each frame is represented as a feature
vector containing 39-components feature vector. This feature vector includes 12 MFCC
plus the energy and the corresponding delta and acceleration coefficients. Features are
extracted at a frame-rate of 10ms with 25ms frame size. Continuous density
left-to-right HMMs are acoustic models. Digits are modeled with 16 emitting states
and a three Gaussian mixtures per states. There are also two pause models. The first
one consists of the three states with six Gaussian mixtures per state, and models
beginning and end pauses. The second one models inter digit pause and has only one
state.

In order to apply the four normalization methods, each transformation is applied to
each component of cepstral vector. CMN is based on the estimation of the mean for
each component, and CMVN is based on the estimation of the mean and the variance
for each component. In the case of HEQ-based methods, the considered reference
probability function is a Gaussian probability distribution with zero mean and unit
variance, and we use first 20ms of test utterance in order to get noise information.
For these normalization methods, the estimations of the mean, the variance, and the

cumulative density function are obtained using all the frames in a utterance. In the
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case of all normalization methods, normalization is applied for both training and

recognition.
<Table 1> Word accuracies (%) in clean training condition

Method

de Baseline CMN CMVN HEQ Proposed

Clean 98.94 99.05 98.99 99.06 99.03
20 94.45 97.64 97.07 97.32 97.45
15 85.35 88.14 94.47 94.91 95.54
10 65.21 67.18 87.53 89.39 90.40
5 38.91 36.19 71.41 75.67 78.62
0 17.10 15.21 41.45 46.97 53.20
-5 8.04 8.36 15.85 18.94 24.26
Error Reduction Rate (%)
50%
40%

30%

20% {

10% |

0%

CMVN

HEQ

Proposed

<Figure 4> ERRs in clean training condition

In clean training condition, the ERR of proposed method is 44.6% with respect to
baseline system which is without any normalization techniques. In multi training
condition, the proposed method also has the higher recognition performance than the
conventional HEQ method even though we used a simple noise estimation method. In
multi training condition, since the multi training condition already guarantees the
matched condition between training and test, the proposed methods which are to
reduce the mismatch don’t have much better performance improvement than that of

clean training condition.
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<Table 2> Word accuracies (%) in multi training condition

ethod )
B Baseline CMN CMVN HEQ Proposed
Clean 98.90 99.04 98.75 98.74 98.77
20 97.64 96.61 98.15 98.15 98.07
15 96.30 96.18 96.99 96.86 97.05
10 92.89 92.67 94.65 94.56 94.69
5 78.93 82.10 87.08 88.10 88.32
0 4321 51.65 66.70 68.67 69.47
-5 18.08 20.46 31.01 35.47 37.01

Eror Reduction Rate (%)

50%

40% [

30%

20% |

10%

0%

CMVN

HEQ

Proposed

<Table 3> shows the performance of a conventional HEQ and the proposed HEQ

in the case of using feature vectors which are not compensated with mean and

<Figure 5> ERRs in multi training condition

variance in clean training condition.

From <table 3>, we can also know that the proposed method has better

performance than conventional method in the case of using non-compensated feature

vectors.
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<Table 3> Word accuracies (%) in the case of using non-compensated feature vectors
in clean training condition

Method

B HEQ Proposed
Clean 98.76 98.77
E: 97.18 97.10
15 94.65 95.17
10 88.95 90.06
s 75.67 78.41
4823 54.18
-5 19.75 24.21

5. Conclusion

In this paper, we have studied several linear and nonlinear transformation in
cepstral domain. Compared with the linear transformations, the performances of the
non-linear transformation methods is more efficient under mismatched conditions. Even
though simple noise estimation method is used, the proposed method is effective on
noise environment.

For clean training condition, the proposed method performs better than the
conventional HEQ because the compensated CDF removes the effects of noise from
the CDF of noisy specch feature vectors. In multi training condition, the proposed
methods have also the best recognition performance. From the results, we can conduct
that the proposed non-linear transformation techniques give noise robust transformation

methods.
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