• Title/Summary/Keyword: Culture density

Search Result 986, Processing Time 0.03 seconds

Productivity of the Flounder Stocking Density on the Flounder Culture Farms (넙치양식장 밀식에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.2
    • /
    • pp.85-96
    • /
    • 2011
  • Oliver flounder population density affect Oliver flounder growth and mortality rate. In laboratory pilot experiment, Oliver flounder growth rate is inversely proportional to stocking density. But previous study has not proved external validity. This study is aimed to analyze the effect of stocking density on the Oliver flounder culture farms in Jeju Island. In order to do this, I selected 13 farms in Jeju island as a sample. In the study, various analytical methods including productivity analysis, regression analysis, statistical analysis were conducted for 13 Oliver flounder culture farms. The result of analysis can be summarized as follows. First, in case of the Oliver flounder culture farms, Bertalanffy equation is not applicable to the Oliver flounder growth. Second, the Oliver flounder stocking density, defined as the surface area of Oliver flounder per $m^2$ of water surface area, is preferred to density definition defined as the weight of Oliver flounder per $m^2$ of water surface area on the Oliver Flounder Culture Farms case. Third, growth rate and production weight on the Oliver flounder culture farms are inversely proportional to stocking density on spearman rank correlation test. When extensive comparable biological and culture condition data become available, analysis model can be easily modified to yield more accurate results.

Mass Culture of Ultra-small Rotifer, Synchaeta kitina at the Exchange Rate of Culture Water and Initial Inoculation Density (환수율 및 접종밀도에 따른 초소형 rotifer, Synchaeta kitina의 대량배양)

  • Oh, Jeong-Soo;Park, Jin-Chul;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.354-359
    • /
    • 2009
  • The productivity of ultra-small rotifer, Synchaeta kitina was investigated at the exchange rate of culture water (10, 20, 30, 40 and 50%) and initial inoculation densities (250, 600 and 900 inds. per mL) in semi-continuous culture. Also, the possibility of mass culture was investigated in a 100 L culture tank. Tetraselmis suecica was used as the feed for S. kitina in all experiments. The production of S. kitina increased with an increase in exchange rate of culture water. The highest production ($82.0{\times}10^5$ inds.) was achieved at 40% exchange rate of culture water. The production of S. kitina increased with an increase of initial inoculation density during the first week and the highest total production ($17.4{\times}10^6$ inds.) was achieved at 900 inds. per mL of initial inoculation density. However, on the second week, all treatments were not significantly different in total production (P>0.05). During the two weeks, total production of S. kitina at 900 inds. per mL of initial inoculation density was higher than at 600 inds. of initial inoculation density, but there was no significant difference (P>0.05). In the 100 L culture tank, density of S. kitina was kept from 516 to 890 inds. per mL and S. kitina was daily harvested $15.5{\times}10^6$ to $26.7{\times}10^6$ during the experimental period. The production cost for 100 million rotifers in semi-continuous culture was 63,656 won. The results from this study indicate that the optimal exchange rate of culture water and initial inoculation density for the semi-continuous culture of ultra-small rotifer, S. kitina are 40% and 600 inds. per mL, respectively.

Growth characteristics comparison per planting density on the waxy corn early-planting culture for the paddy field in the southern province

  • Kim, Yong-Soon;Choi, Jin-Gyung;Kim, Dong-Kwan;Park, Heung-Gyu;Kim, Myeong-Seok;Kim, Hyun-Woo;Kim, Sung-IL;Kim, Sang-Yeol
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.88-88
    • /
    • 2017
  • The study was conducted to analyze the growth characteristics comparison per planting density on the waxy corn early-planting culture for the paddy field in the southern province of south Korea. The cultivation period of early-planting culture for the paddy farming of the waxy corn are sown on February 15, 2016years, transplanting March 15 and harvest June 20. And it grew 126 days. The weather change according to the cultivation period of unheated plastic house early-planting culture, it was average temperature $14.6^{\circ}C$ and humidity 62.5%. And the temperature was 5.6 degrees Celsius warmer compared with the outside temperature and the humidity was 0.7 percent higher tendency. At the growth per planting density of waxy corn, culm length was average 224cm, the more it is high density culture the more was high trend. Stem diameter and ear length the more it is high density culture the more was lowed trend. The node number of $60{\times}20Cm$ was 12 nodes, fruit seting 5.7 nodes, tasseling number 94 days and silking number 96 days. In the ear characteristics per planting density, the size of ear length, seed setting length, ear width and ear weight the more planting density is high the more lowed that trend. The commodity percentage of planting density $60{\times}35Cm$ was the highest among other treatment as 69.1%. But, marketable yield was the highest planting density of $60{\times}20Cm$ as 4,543 ears/10a, and appeared in order $60{\times}25Cm$ 95%> $60{\times}30Cm$ 93%> $60{\times}35Cm$ 92%. The planting density on the waxy corn early-planting culture for the paddy farming in the southern province, the planting density analyzed to be effective planting of over 25% than normal season culture.

  • PDF

Growth Rate and Biomass Productivity of Chlorella as Affected by Culture Depth and Cell Density in an Open Circular Photobioreactor

  • Liang, Fang;Wen, Xiaobin;Geng, Yahong;Ouyang, Zhengrong;Luo, Liming;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.539-544
    • /
    • 2013
  • The effects of culture depth (2-10 cm) and cell density on the growth rate and biomass productivity of Chlorella sp. XQ-200419 were investigated through the use of a self-designed open circular pond photobioreactor-imitation system. With increases in culture depths from 2 to 10 cm, the growth rate decreased significantly from 1.08 /d to 0.39 /d. However, the biomass productivity only increased slightly from 8.41 to 11.22 $g/m^2/d$. The biomass productivity (11.08 $g/m^2/d$) achieved in 4 cm culture with an initial $OD_{540}$ of 0.95 was similar to that achieved in 10 cm culture with an initial $OD_{540}$ of 0.5. In addition, the duration of maximal areal productivity at a 4 cm depth was prolonged from 1 to 4 days, a finding that was also similar to that of the culture at a 10 cm depth. In both cases, the initial areal biomass densities were identical. Based on these results and previous studies, it can be concluded that the influence of culture depth and cell density on areal biomass productivity is actually due to different areal biomass densities. Under suitable conditions, there are a range of optimal biomass densities, and areal biomass productivity reaches its maximum when the biomass density is within these optimal ranges. Otherwise, biomass productivity will decrease. Therefore, a key factor for high biomass productivity is to maintain an optimal biomass density.

Growth Characteristics of Ultrahigh-density Microalgal Cultures

  • Richmond, Amos
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.349-353
    • /
    • 2003
  • The physiological characteristics of cultures of very high cell mass (e.g. 10g cell mass/L), termed“ultrahigh cell density cultures”is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m$\^$-2/ day$\^$-1/) productivity. Cell-growth inhibition (GI) unfolds as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0cm OP reactor could produce ca. 50% more than reactors with longer OP, e.g. 5 or 10cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP of ca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell growth inhibition in the culture, the exact nature of which is awaiting detailed investigation.

Trends in Monoclonal Antibody Production Using Various Bioreactor Systems

  • Jyothilekshmi, I.;Jayaprakash, N.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.349-357
    • /
    • 2021
  • Monoclonal antibodies are widely used as diagnostic reagents and for therapeutic purposes, and their demand is increasing extensively. To produce these proteins in sufficient quantities for commercial use, it is necessary to raise the output by scaling up the production processes. This review describes recent trends in high-density cell culture systems established for monoclonal antibody production that are excellent methods to scale up from the lab-scale cell culture. Among the reactors, hollow fiber bioreactors contribute to a major part of high-density cell culture as they can provide a tremendous amount of surface area in a small volume for cell growth. As an alternative to hollow fiber reactors, a novel disposable bioreactor has been developed, which consists of a polymer-based supermacroporous material, cryogel, as a matrix for cell growth. Packed bed systems and disposable wave bioreactors have also been introduced for high cell density culture. These developments in high-density cell culture systems have led to the monoclonal antibody production in an economically favourable manner and made monoclonal antibodies one of the dominant therapeutic and diagnostic proteins in biopharmaceutical industry.

Growth of rotifer by the air, oxygen gas-supplied and the pH-adjusted and productivity of the high density culture (공기 및 산소 공급과 pH 조절에 따른 rotifer의 성장과 고밀도 배양의 생산성)

  • PARK Huem Gi;LEE Kyun Woo;KIM Sung Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.753-757
    • /
    • 1999
  • The growth of rotifer, Brachionus rotundiformis was evaluated at different culture conditions. Rotifer was fed on condensed freshwater Chlorella. The productivity of rotifer in the high density culture system was compared to that of rotifer in the batch culture system, in which rotifer was fed on baker's yeast. The growth rate of rotifer increased as temperature increased in the culture system supplied with air or oxygen gas. The maximum density of rotifer in the culture systems supplied with air was in range of 16,300$\~$17,000 ind./ml at $24^{\circ}C$. In the culture systems supplied with oxygen gas, it ranged 26,300$\~$30,500 ind/ml at $28^{\circ}C$. When the concentration of dissolved oxygen in the culture system supplied with air reached to below 1 ppm or when the concentration of undissolved ammonia in the culture system supplied with oxygen gas reached 16.6$\~$22.6 ppm, the growth of rotifer decreased. When oxygen gas was supplied and pH was adjusted to 7, the maximum density of rotifer reached to 43,000 ind/ml at $32^{\circ}C$. The production costs for 10 billion rotifer in the high density culture and batch culture were 693,000 and 961,000 won, respectively. Therefore, it was concluded that the productivity of rotifer in the high density culture was higher than that in a batch culture.

  • PDF

Kinetic Analysis of the Effect of Cell Density on Hybridoma Cell Growth in Batch Culture

  • Lee, Eun-Yeol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.117-120
    • /
    • 2002
  • The effect of cell density on cell growth was investigated in a suspension batch culture of hybridoma cells. The specific growth rate was found to increase with increasing initial cell density and then to decrease with further increases in initial cell density. In order to quantitatively describe the dependence of specific growth rate on cell density, a kinetic model is proposed, which satisfactorily represents the experimental data.

High Density Cell Culture of Mucor sp. KCTC 8405P for Production of ${\gamma}-Linolenic$ Acid in Fed-Batch Culture

  • Park, Jong-Hyun;Shin, Hyun-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.126-129
    • /
    • 1991
  • In order to produce ${\gamma}-linolenic$ acid by Mucor sp. KCTC 8405P. the fungus was cultivated in fed-batch culture with two phases. i.e., growth in yeast-like form and induction to hyphal growth by pH shift of the culture medium during cultivation. The synchronous growth of the fungus into the appropriate sizes was important for the high density cell culture of this dimorphic fungus. Dissolved oxygen concentration in the medium did not affect degree of unsaturation of fatty acids and ${\gamma}-linolenic$ acid content. Under the culture conditions applied in this experiment. the fungus was found to produce 100 g/l dry mycelia containing 40% of the lipids, where ${\gamma}-linolenic$ acid comprised about 9% of the total extractable fatty acids.

  • PDF

Development of High Density Mammalian CellCulture system for the Production of Tissue-Type Plasminogen Activator

  • Park, Byong-Gon;Chun, Joo-Mi;Lee, Chang-Jin;Chun, Gie-Taek;Kim, Ik-Hwan;Jeong, Yeon-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.123-129
    • /
    • 2000
  • A high cell density culture system for the anchorage dependent CHO cells was developed based on the combination of in removal of ammonium ion and microcarrier culture system, and semi-fed-batch feeding of glucose and glutamine was employed to the developed culture system. The glass bead was selected as an optimum microcarrier in terms of cell growth. An ammonium ion selective zeolite, Phillipsite-Gismondine, was packed in a dialysis menium ion. The semi-fed-batch operation was employer to the novel culture system for the high density cell culture, and the results showed the cell growth was improved by 32% and tPA productivity by 250%.

  • PDF