• Title/Summary/Keyword: Cucumber leaves

Search Result 233, Processing Time 0.035 seconds

Effects of Cultivation Method on the Growth and Yield of a Cucumber for Development of a Robotic Harvester (오이수확용 로봇개발을 위한 재배방식이 생육 및 수량에 미치는 영향)

  • Lee, Dae-Won;Min, Byung-Ro;Kim, Hyun-Tae;Im, Ki-Taek;Kim, Woong;Kwon, Young-Sam;Nam, Yooun-Il;Choi, Jae-Woong;Sung, Si-Hong
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.226-236
    • /
    • 1998
  • If the lowest leaves of the cucumber were removed or training cultivable method was changed, a computer vision system could divide well the cucumber fruit from the others, and also an end-effector could reach and grip cucumber fruit and cut well its fruit stalk. Therefore, this study investigated whether removal leaves and training cultivable method of a cucumber could affect its growth and yield. They can help to be designed the vision system and the end-effector. A cucumber fruit grew by 6-l5cm long for 2 days regardless of removing leaves. Removal leaves didn't affect growth of cucumber fruit. Number of cucumber fruit was produced within 10% different values by three methods (A, B, C) of removal leaves. The first grade rate (best quality) of 4 B and C was 56.7%, 53.1%, 56.3% respectively. Consequently, proper removal leaves were better than traditional way, which does not remove a leaf, because they make cucumber plant ventilate more freely and absorb more light.

  • PDF

Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphidborne yellows virus Infecting Cucumis Species in Korea

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.

Biological Control of Botrytis Leaf Blight of Lily and Botrytis Gray Mold of Cucumber by Ulocladium atrum (Ulocladium atrum을 이용한 백합 잎마름병 및 오이 잿빛곰팡이병의 생물학적 방제)

  • Lee, Nam-Young;Kwon, Eun-Mi;Kim, Jin-Cheol;Yu, Seung-Hun
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.319-323
    • /
    • 2004
  • This study was conducted to investigate the effect of U. atrum treatment on control of Botrytis leaf blight of lily and Botrytis gray mold of cucumber, and to evaluate the U. atrum as the biological control agent of Botrytis diseases. The antagonistic isolates CNU 9037 and CNU 9054 isolated from tomato leaves were identified as Ulocladium atrum Preuss based on morphological characteristics. This is the first record of U. atrum in Korea. In bioassays on dead leaves of tomato and cucumber, treatment of U. atrum colonized the dead leaves and suppressed sporulation of Botrytis as compared with the untreated control. The suppression of spoulation of Botrytis on dead leaf segments by U. atrum was higher when U. atrum was treated before Botrytis was treated. The effect of treatments with conidial suspension of U. atrum on leaf blight of lily and gray mold of cucumber caused by Botrytis elliptica and B. cinerea, respectively, was investigated under greenhouse conditions. Spraying U. atrum ($1{\times}10^6$ conidia per ml) at intervals of 1 week for three times resulted in a significant reduction of natural infections of lily leaves caused by B. elliptica. Protective value of U. atrum treatment was higher than that of the fungicide (procymidone) treatment. Spraying U. atrum also resulted in a significant reduction of cucumber gray mold caused by B. cinerea. Our results show that U. atrum has a potential for biological control against diseases caused by Botrytis spp, in lily and cucumber.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

Early Alterations of Chlorophyll Fluorescence by Light-Chilling in Cucumber (Cucumis sativus) Leaves and Their Usage as Stress Indicators (오이 잎에서 저온 광저해에 의한 형광유도과정의 초기 변이와 스트레스 지표)

  • Ha, Suk-Bong;Young-Jae Eu;Choon-Hwan Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.151-163
    • /
    • 1996
  • To investigate the early symptoms of light-chilling, alterations of chlorophyll fluorescence transients were monitored in cucumber (Cucumis sativus L. cv. Ilmichungjang) leaves. During 24 h chilling, decreases in (Fv)m/Fm, qE and qQ, and an increase in Fo were observed. The chilling effects were not recovered at room temperature, and a significant increase in Fo was observed during the recovery period. After 6 h chilling, ‘dip’(D) level of the transients became obscure, and the negative slope after ‘peak’(P) disappeared. The first derivative (dFv/dt) of the fast fluorescence rise curve was used to obtain more accurate information about the changes in the transients. The maximal rate of the fluorescence increase in the D-p rise curve (Fr) has been the most frequently used chilling stress indicator. However, a correct value of Fr could not be measured when the D level became obscure. This problem was overcome by introducing a new indicator, HFr (dFv/dt at Fv = 1/2 (Fv)m), and HFr gave very similar values to Fr. To monitor the changes in curvature around D level, another new parameter, ${\Delta}S$(D-Fr), was also introduced. These three parameters decreased very sensitively during light-chilling. In addition, increases in these parameters were observed during the first 2 h chilling, but this increase in Fr was also observed in pea leaf discs dark-chilled for 15 min, suggesting that this very early change is a common response to chilling in both pea and cucumber leaves. Quenching coefficients were also very sensitive to chilling, especially qE. Discussion on the usage of these parameters as chilling stress indicators is given in the text.

  • PDF

Effects of Chilling Injury in the Light on Chlorophyll Fluorescence and D1 Protein Turnover in Cucumber and Pea Leaves

  • Eu, Young-Jae;Ha, Suk-Bong;Lee, Choon-Hwan
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.398-404
    • /
    • 1996
  • Light-chilling effects were investigated in chilling-sensitive cucumber (Cucumis sativus L. cv. Ilmichungjang) and chilling-resistant pea (Pisum sativum L. cv. Giant) leaf discs in relation to possible damage in D1 protein. In both plants, dark-chilling did not cause any noticeable changes in (Fv)m/Fm and lincomycin did not affect the decrease in (Fv)m/Fm caused by light-chilling. This result suggests that the de novo synthesis of D1 protein did not occur actively during light-chilling. In pea light-chilled for 6 h. the decreased (Fv)m/Fm was partly recovered in the dark, and almost complete recovery was observed in the light. In cucumber light-chilled for 3 h. the reduced (Fv)m/Fm decreased further for the initial 2 h recovery process in the light regardless of the treatment of lincomycin and recovered very slowly. In both plant species, the treatment of lincomycin inhibited the recovery process in the light, but did not significantly inhibit the process in the dark. In cucumber leaves pulse-labeled with $[^{35}S]Met$, the labeled band intensities of isolated pigment-protein complexes were almost the same during the 6 h light-chilling, but significant decreases in band intensities were observed during the 3 h recovery period. This result suggests that the irreversibly damaged D1 protein was degraded during the recovery period. However, no noticeable changes were observed in the pea leaves during the 12 h chilling and 3 h recovery period. The polyacrylamide gel electrophoresis of the pigment-protein complexes showed that the principal lesion sites of light-chilling were different from those of room temperature photoinhibition.

  • PDF

Ultrastructures of Colletotrichum orbiculare in the Leaves of Cucumber Plants Expressing Induced Systemic Resistance Mediated by Glomus intraradices BEG110

  • Jeun, Yong-Chull;Lee, Yun-Jung;Kim, Ki-Woo;Kim, Su-Jung;Lee, Sang-Woo
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.236-241
    • /
    • 2008
  • The colonization of an arbuscular mycorrhizal fungus Glomus intraradices BEG110 in the soil caused a decrease in disease severity in cucumber plants after fungal inoculation with Colletotrichum orbiculare. In order to illustrate the resistance mechanism mediated by G. intraradices BEG110, infection patterns caused by C. orbiculare in the leaves of cucumber plants and the host cellular responses were characterized. These properties were characterized using transmission electron microscopy on the leaves of cucumber plants grown in soil colonized with G. intraradices BEG110. In the untreated plants, inter- and intra-cellular fungal hyphae were observed throughout the leaf tissues during both the biotrophic and necrotrophic phases of infection. The cytoplasm of fungal hyphae appeared intact during the biotrophic phase, suggesting no defense response against the fungus. However, several typical resistance responses were observed in the plants when treated with G. intraradices BEG110 including the formation of sheaths around the intracellular hyphae or a thickening of host cell walls. These observations suggest that the resistance mediated by G. intraradices BEG110 most often occurs in the symplast of the host cells rather than in the apoplast. In addition, this resistance is similar to those mediated by biotic inducers such as plant growth promoting rhizobacteria.

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization of Pseudomonas chlororaphis O6 upon Challenge-inoculation with Corynespora cassiicola.

  • Kim, M.;Kim, Y. C.;B. H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.90.1-90
    • /
    • 2003
  • Colonization of Pseudomonas chlororaphis O6, a nonpathogenic rhizobacterium, on the roots induced systemic resistance in cucumber plants against tai-get leaf spot, a foliar disease caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from the cucumber leaves 12 h after inoculation with C. cassiicola, which roots had been previously treated with O6. To identify the genes involved in the O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from C cassiicola-inoculated cucumber leaves with and without previous O6 treatment on the plant roots. Differential screening of the cDNA library led to the isolation of 5 distinct genesencoding a GTP-binding protein, a putative senescence-associated protein, a galactinol synthase, a hypersensitive-induced reaction protein, and a putative aquaporin. Expressions of these genes are not induced by O6 colonization alone. Before challenge inoculation, no increase in the gene transcriptions could be detected in previously O6-treated and untreated plants but, upon subsequent inoculation with the pathogenic fungus, transcription levels in O6-treated plants rose significantly faster and stronger than in untreated plants. Therefore, the O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defense responses which becomes apparent only after challenge inoculation on the distal, untreated plant parts, as suggested by Conrath et al. (2002). This work was supported by a grant R11-2001-092-02006-0 from the Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center at Chonnam National University.

  • PDF

Influence of Calcium Supply on the Growth, Calcium and Oxalate Contents, Mineral Nutrients and Ca-oxalate Crystal Formation of Cucumber (오이생육, 칼슘, 옥살산 및 무기성분 함량 및 칼슘-옥살산염 형성에 대한 칼슘처리 효과)

  • Sung, Jwa-Kyung;Lee, Su-Yeon;Lee, Ye-Jin;Kim, Rog-Young;Lee, Ju-Young;Lee, Jong-Sik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.471-477
    • /
    • 2010
  • Although the roles of calcium in plant are widely known, little is known about on an antagonistic effect of macro elements, oxalate biosynthesis and main shape of crystal in cucumber plant organs. Seeds of cucumber (Cucumis sativus cv. Ijoeunbackdadagi) were germinated in perlite tray supplied with distilled-deionized water. Seedlings were transplanted into aerated containers with a half strength of Ross nutrient solution. Ca levels treated in media were as follows; No-Ca, $Ca(NO_3)_2$ 0.25, 1.25 and 2.5 mmol $L^{-1}$, and $Ca(NO_3)_2$ 2.5 mmol $L^{-1}$ + $CaCl_210$, 25 and 50 mmol $L^{-1}$. Ca-deficient and -excessive conditions severely reduced cucumber growth, as compared to the control, and adversely affected an accumulation of macro elements (N, P, K, and Mg). Calcium favorably induced oxalate (acid-soluble) synthesis in leaves and roots of cucumber plant, but not in stem. Acid-soluble oxalate contents in leaves proportionally increased with Ca supply levels (0.91, P<0.001), however, this pattern was not observed in stem and roots. Ca-oxalate crystal formation and compositional analysis were examined using SEM-EDS technique in cucumber leaves. The main type of crystal revealed a prismatic crystal and main components were Ca, Na and Cl.

Observations of Infection Structures after Inoculation with Colletotrichum orbiculare on the Leaves of Cucumber Plants Pre-inoculated with Two Bacterial Strains Pseudomonas putida or Micrococcus luteus

  • Jeun, Yong-Chull;Lee, Kyung-Hoo
    • Mycobiology
    • /
    • v.33 no.3
    • /
    • pp.131-136
    • /
    • 2005
  • Infection structures were observed at the penetration sites on the leaves of cucumber plants inoculated with Colletotrichum orbiculare using a fluorescence microscope. The cucumber plants were previously drenched with suspension of bacterial strains Pseudomonas putida or Micrococcus luteus. The plants pre-inoculated with both bacterial strains were resistant against anthracnose after inoculation with C. orbiculare. To investigate the resistance mechanism by both bacterial strains, the surface of infected leaves was observed at the different time after challenge inoculation. At 3 days after inoculation there were no differences in the germination and appressorium formation of conidia of C. orbiculare as well as in the callose formation of the plants between both bacteria pre-inoculated and non-treated. At 5 days, the germination and appressorium formation of the fungal conidia were, however, significantly decreased on the leaves of plants pre-inoculated with M. luteus at the concentration with $1.0{\times}10^7\;cfu/ml$. Furthermore, callose formation of plants cells at the penetration sites was apparently increased. In contrast, there were no defense reactions of the plants at the concentration with $1.0{\times}10^6\;cfu/ml$ of M. luteus. Similarly, inoculation P. putida caused no plant resistance at the low concentration, whereas increase of callose formation was observed at the higher concentration. The results of this study suggest that the resistant mechanisms might be differently expressed by the concentration of pre-treatment with bacterial suspension.