• Title/Summary/Keyword: Cucker-Smale model

Search Result 4, Processing Time 0.019 seconds

FLOCKING AND PATTERN MOTION IN A MODIFIED CUCKER-SMALE MODEL

  • Li, Xiang;Liu, Yicheng;Wu, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1327-1339
    • /
    • 2016
  • Self-organizing systems arise very naturally in artificial intelligence, and in physical, biological and social sciences. In this paper, we modify the classic Cucker-Smale model at both microscopic and macroscopic levels by taking the target motion pattern driving forces into consideration. Such target motion pattern driving force functions are properly defined for the line-shaped motion pattern and the ball-shaped motion pattern. For the modified Cucker-Smale model with the prescribed line-shaped motion pattern, we have analytically shown that there is a flocking pattern with an asymptotic flocking velocity. This is illustrated by numerical simulations using both symmetric and non-symmetric pairwise influence functions. For the modified Cucker-Smale model with the prescribed ball-shaped motion pattern, our simulations suggest that the solution also converges to the prescribed motion pattern.

Transformed Augmented Cucker-Smale Model with Mahalanobis Distance and Statistical Degrees of Freedom for Improving Efficiency of Flocking Flight System (시스템의 성능 향상을 위해 마할라노비스 거리와 자유도를 이용하여 변형시킨 쿠커-스메일 모델)

  • Jung, Jae-Hwi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.573-580
    • /
    • 2020
  • One of challengeable problems of multi-agent systems is a positioning control. Augmented Cucker-Smale model is using for controlling position and velocity of the multi-agent system. The original model applies same coefficients to all agents in same group, so that does not consider characteristic of each agent. To enhance performance of the original model, this paper transforms original coefficients to Mahalanobis distance coefficients that reflects an initial distribution of multi-agent systems and applies statistical degrees of freedom. This paper not only confirms tendency of enhanced performance of the suggested model by using monte-carlo simulation, but also additionally compares trajectory of the original model with the suggested model to confirm coefficients of Mahalanobis distance performing correctly.

COLLECTIVE BEHAVIORS OF SECOND-ORDER NONLINEAR CONSENSUS MODELS WITH A BONDING FORCE

  • Hyunjin Ahn;Junhyeok Byeon;Seung-Yeal Ha;Jaeyoung Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.565-602
    • /
    • 2024
  • We study the collective behaviors of two second-order nonlinear consensus models with a bonding force, namely the Kuramoto model and the Cucker-Smale model with inter-particle bonding force. The proposed models contain feedback control terms which induce collision avoidance and emergent consensus dynamics in a suitable framework. Through the cooperative interplays between feedback controls, initial state configuration tends to an ordered configuration asymptotically under suitable frameworks which are formulated in terms of system parameters and initial configurations. For a two-particle system on the real line, we show that the relative state tends to the preassigned value asymptotically, and we also provide several numerical examples to analyze the possible nonlinear dynamics of the proposed models, and compare them with analytical results.

Design of Decentralized Guidance Algorithm for Swarm Flight of Fixed-Wing Unmanned Aerial Vehicles (고정익 소형무인기 군집비행을 위한 분산형 유도 알고리듬 설계)

  • Jeong, Junho;Myung, Hyunsam;Kim, Dowan;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.981-988
    • /
    • 2021
  • This paper presents a decentralized guidance algorithm for swarm flight of fixed-wing UAVs (Unmanned Aerial Vehicles). Considering swarm flight missions, we assume four representative swarm tasks: gathering, loitering, waypoint/path following, and individual task. Those tasks require several distinct maneuvers such as path following, flocking, and collision avoidance. In order to deal with the required maneuvers, this paper proposes an integrated guidance algorithm based on vector field, augmented Cucker-Smale model, and potential field methods. Integrated guidance command is synthesized with heuristic weights designed for each guidance method. The proposed algorithm is verified through flight tests using up to 19 small fixed-wing UAVs.