• Title/Summary/Keyword: Cubic Parallel Device

Search Result 11, Processing Time 0.035 seconds

Effect of U-Joint Errors Analysis for a Cubic Parallel Device (육면형 병렬기구에서의 유니버설 조인트 오차의 영향)

  • Lim, Seung-Reung;Choi, Woo-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.789-794
    • /
    • 2000
  • This study proposes an error analysis for a cubic parallel device. There are many sources of errors in the device. An error analysis is presented based on an error model formed from the relation between the universal joint error of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in evaluating the accuracy of a parallel device.

  • PDF

Effect of Joint Errors Analysis for a Cubic Parallel Device (육면형 병렬 기구에서의 조인트 오차의 영향)

  • 임승룡;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.672-675
    • /
    • 2000
  • There are many sources of errors in the parallel device. This study investigates the effect of a clearance error at a U-joint on the position and orientation errors of the platform of a new parallel device, cubic parallel manipulator. In this study, the limits of errors can be estimated for given conditions.

  • PDF

Effect of Joint Errors in a Cubic Parallel Device (육면형 병렬기구에서의 조인트 오차의 영향)

  • Lim, Seung-Reung;Choi, Woo-Chun;Song, Jae-Bok;Hong, Dae-Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.87-92
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device, cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include upper and down universal joint errors, due to the directional changes in the forces in the links, and actuation errors. An error analysis is presented based on an error model formed through the relation between the universal joint errors of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in predicting the accuracy of other cubic parallel devices.

  • PDF

Error Analysis for a Cubic Parallel Device Moving at Uniform Velocity (등속 운동을 하는 육면형 병렬기구의 오차 해석)

  • 임승룡;최우천;송재복;홍대희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.211-214
    • /
    • 2000
  • An error analysis is very important for a precision machine tool to estimate its performance. This study proposes a new parallel device, a cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include universal joint errors, errors occurring due to changes in the fore directions in the links, and actuation errors. An error analysis is performed for the manipulator platform moving at uniform velocity. The analysis shows how the position and orientation of the platform influences the directional link forces that change the errors in the manipulator. The analysis shows that the method can be used in predicting the accuracy of parallel devices.

  • PDF

Error Model and Accuracy Analysis of a Cubic Parallel Device

  • Lim, Seung-Reung;Park, Woo-Chun;Song, Jae-Bok;Daehie Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.75-80
    • /
    • 2001
  • An error analysis is very important to estimate performance of a precision machine. This study proposes an error analysis for a new parallel device, a cubic parallel device. The cubic parallel manipulator has error sources including upper and lower universal joint errors due to the directional changes in the link and actuation errors. The maximum errors of the end effector are affected by the axial direction changes of each links and the clearances of the universal joints when the parallel manipulator is moving along a path. It is found that the changes of errors mostly occur at the positions where the directions of exerting link forces shift. The error analysis is based on an error model formed from the relation between the universal point errors and the end-effector accuracy. The analysis method can be also used in predicting the accuracy of other parallel devices.

  • PDF

Effect of Link Stiffness on Error of Cubic Parallel Manipulator in 3D Workspace (3차원 작업영역에서 링크 강성이 육면형 병렬 기구 오차에 미치는 영향)

  • 박성철;임승룡;김현수;최우천;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.397-401
    • /
    • 1997
  • An error analysis is very important for a precision machine to estimate its performances. This study deals with error of a new parallel device, cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the cubic parallel device vary depending on the stiffness of the manipulator. The stiffness of each link depends on the directions of the link and actuation force. In this paper, the stiffness of the manipulator is calculated by ARAQUS and the position and orlentation errors are predicted within a given workspace. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing parallel devices.

  • PDF

Effect of Link Stiffness on Error of Cubic Parallel Manipulator (링크의 강성이 육면형 병렬 기구 오차에 미치는 영향)

  • 강경우;임승룡;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.479-482
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device. cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the proposed cubic parallel vary with the stiffness of the manipulator. The stiffness of each leg depends on the direction of the actuation force and its direction. In this paper, the stiffness of the manipulator is calculated and the position errors and the orientation errors are predicted with the platform moving. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing a parallel manipulator.

  • PDF

Installation Error Calibration by Using Levenberg-Marquardt Method on a Cubic Parallel Manipulator (Levenberg-Marquardt 방법을 이용한 육면형 병렬기구의 설치 오차 보정)

  • 임승룡;임현규;최우천;송재복;홍대희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.184-191
    • /
    • 2003
  • A parallel manipulator has high stiffness and all the joint errors on the device are not accumulated at the end -effector unlike a serial manipulator. These are the reasons why the parallel manipulator has been widely used in many fields of industry. In the parallel manipulator, it is very important to predict the exact pose of the end-effector when we want to control the end-effector motion. Installation errors have to be determined in order to predict and control the actual position and pose of the end-effector. This paper presents an algorithm to find the whole 36 joint error components with joint clearance errors and measurement errors considered, when a link length measurement sensor is used and data more than 36 times are acquired for 36 different configurations. A simulation test using this algorithm is performed with a Matlab program which uses the Levenberg-Marquardt method that is known to be efficient for non-linear optimization.

Error Analysis of a Parallel Mechanism Considering Link Stiffness and Joint Clearances

  • Park, Woo-Chun;Song, Jae-Bok;Daehie Hong;Shim, Jae-Kyung;Lim, Seung-Reung;Kyungwoo Kang;Park, Sungchul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.799-809
    • /
    • 2002
  • In order to utilize a parallel mechanism as a machine tool component, it is important to estimate the errors of its end-effector due to the uncertainties in parts. This study proposes an error analysis for a new parallel device, a cubic parallel mechanism. For the parallel device, we consider two kinds of errors. One is a static error due to link stiffness and the other is a dynamic error due to clearances in the parts. In this study, we propose a stiffness model for the cubic parallel mechanism under the assumption that the link stiffness is a linear function of the link length. Also, from the fact that the errors of u-joints and spherical joints are changed with the direction of force acting on the link, they are regarded as a part of link errors, and then the error model is derived using forward kinematics. Lastly, both the error models are integrated into the total error, which is analyzed with a test example that the platform moves along a circular path. This analysis can be used in predicting the accuracy of other parallel devices.

Analysis of Stiffness Bounds for Parallel Devices Using Eigenvalues (고유치를 이용한 병렬형 기구의 강성범위 해석)

  • Kim, Taek-Soo;Kim, Hyun;Hong, Dae-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.699-702
    • /
    • 2000
  • In order to use a parallel device fur machine tool feed mechanism, it is very important to analyze its stiffness over the workspace. Generally, the stiffness of a rod varies with its length. In this paper, the stiffness of the leg is modeled as a linear function. With the linear stiffness model, the methods that can determine stiffness bounds and max/min stiffness directions are presented utilizing eigenvalues and eigenvectors of the stiffness matrix. The stiffness variation along a tool-path and stiffness mapping over a workspace are presented with cubic-shaped parallel device which is originally designed for machine tool feed mechanism.

  • PDF