• Title/Summary/Keyword: Cube-texture

검색결과 69건 처리시간 0.028초

분말 성형체로부터 양축정렬 집합조직을 갖는 니켈 테이프의 제조 (Fabrication of Biaxially Textured Ni Tapes from Ni Powder Compact Rods)

  • 이동욱;지봉기;주진호;김찬중
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.241-248
    • /
    • 2003
  • Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 $\mu$m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100$0^{\circ}C$ showed poor elongation and low fracture strength, while the Wi rods sintered above 100$0^{\circ}C$ revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100$0^{\circ}C$ are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 $\mu$m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8$^{\circ}$ to 10$^{\circ}$. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10$^{\circ}$, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.

알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향 (Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet)

  • 김훈동;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

AA3004에서 전단변형 미세조직 및 집합조직의 형성 (Formation of Shear Texture and Microstructure in AA3004 Sheet)

  • 이강노;김종국;김훈동;황병복;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.184-186
    • /
    • 2002
  • The evolution of texture and microstructure during warm rolling and subsequent annealing in aluminium 3004 alloy sheet was investigated by X-ray texture measurements and microstructure observations. Warm rolling at 250$^{\circ}C$ led to the development of strong through thickness texture gradients with shear textures at the surface layer and a regular rolling texture in the center of the sheets. FEM simulations indicated that these texture gradients are caused by pronounced strain gradients throughout the sheet thickness. Upon recrystallization annealing, in the sheet center the characteristic cube-recrystallization texture developed, while in the surface layers with a pronounced shear texture continuous recrystallization took place which led to the formation of a very fine grained microstructure. It is concluded that the very complex strain history in the near-surface layers together with the resulting high work-hardening rate gave rise to the formation of the ultra-fine grains with an average size smaller than 2$\mu\textrm{m}$.

  • PDF

판재의 초기 이방성이 스트레칭 성형에 미치는 영향 (Effects of Initial Anisotropy in the Plane Sheet on Stretching Process)

  • 배석용;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.242-245
    • /
    • 1998
  • Effects of the anisotrpy due to the initial textures in the plane sheet on plane strain punch stretching has been investigated. In this study, the anisotropy from textures in the sheet is incoporated into the finite element process model by combining the theory of crstal plasticity. Three different textures such as random texture, plane strain compression texture and cube texture are considered. Variations of puch loads as well as thickness distributions of the sheets with three different initial textures are investigated.

  • PDF

알루미늄 5000계 판재에서 두께 층에 따른 집합조직 형성에 미치는 압연 패스당 변형률의 영향에 관한 연구 (Effect of Rolling Draughts on the Evolution of Through-Thickness Textures in Aluminum 5000X Sheet)

  • 김현철;김용희;허무영
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.193-202
    • /
    • 2000
  • The influence of rolling draughts on the formation of through-thickness textures in aluminum 5000X sheet was investigated by X-ray texture measurements and microstructure observations. In order to intensify the deformation inhomogeneities, cold rolling was performed without lubrication. Applying a large draught gave rise to the formation of the shear texture at the surface, whereas a normal plane strain testure formed at the surface after deformation with a small draught. The orientation density along the $\beta$-fiber orientations which developed in the center layer of the rolled specimen was also dependent on the strain gradients in a roll gap. Upon annealing, the deformed substructure of sample surfaces was transformed into a fine grained recrystallized microsturcture through extended recovery reaction. However, coarse grains developed after the discontinuous recrystallization which gave rise to the development of the Cube-texture.

  • PDF

Al-4.0%Zn-1.5%Mg-0.9%Cu 합금의 압출, 압연 및 열처리에 따른 미세조직 변화 (Evolution of Microstructure in Al-4.0%Zn-1.5%Mg-0.9%Cu Alloy by Extrusion, Rolling and Heat Treatment)

  • 권혁곤;박종문;오명훈;박노진
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, microstructural changes due to extrusion, rolling and heat treatment were studied to fabricate Al-4.0wt%Zn-1.5wt%Mg-0.9wt%Cu alloys with homogeneous microstructure suitable for metal cases of smart phones and electronic products fabricated through plastic working. After extrusion microstructure and texture were developed very differently on the surface and inside. Inside, coarse grains were formed and a strong Cube component orientation was developed. On the surface, a weak texture was developed with small grains. After 72% cold rolling the intensity of the Cube component orientation was lower, and uniform texture was developed in all the layers and the R-value was uniformly predicted. After recrystallization, the grain size difference between at the surface and the inside is smaller, when 72% rolling was performed, indicating that a uniform structure is formed. Texture develops almost randomly after recrystallization and exhibits uniform R-values at all layers.

YBCO 박막선재용 Ni 기판의 집합도에 미치는 제조공정 변수효과 (Effect of Processing Variables on the Texture of Ni Substrate for YBCO Coated Conductor)

  • 지봉기;임준형;이동욱;주진호;나완수;김찬중;홍계원
    • 한국전기전자재료학회논문지
    • /
    • 제16권10호
    • /
    • pp.938-945
    • /
    • 2003
  • We fabricated Ni-substrate for YBCO coated conductors and evaluated the effects of pressing and annealing temperature and time on texture. Ni substrate was fabricated by powder metallurgy technique and compacts were prepared by applying uniaxial or isostatic pressure. The texture of substrate made by applying cold isostatic pressure (CIP) was stronger than that by uniaxial pressure which we attribute to the fact that the CIP method provided higher density and more uniform density distribution. It was observed that the substrate annealed at 400 C showed both retained texture and recrystallized texture. On the other hand, the texture of substrate significantly improved at annealing temperature above 500 C, forming strong 4-fold symmetry, [111] II ND texture, and FWHM of 9∼10 . It is to be noted that the degree of texture was almost independent of annealing temperature (500∼1000 C) and annealing time(1∼54 min, at 1000 C). EBSD and AFM analysis indicated that 99% of grain boundaries was low angle grain boundary and RMS was approximately 3 nm, respectively. Development of strong cube texture and high fraction of low angle grain boundary of Ni-substrate made by powder metallurgy technique in our study is considered to be suitable for the application of YBCO coated conductors.

Effect of Asymmetric Hot Rolling on the Texture Evolution of Fe-3%Si Steel

  • Na, Tae-Wook;Park, Hyung-Ki;Park, Chang-Soo;Joo, Hyung-Don;Park, Jong-Tae;Han, Heung Nam;Hwang, Nong-Moon
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1369-1375
    • /
    • 2018
  • In Fe-3%Si steel, the hot rolling process affects not only the hot rolling texture but also the primary recrystallization texture. Here, the effect of asymmetric hot rolling was studied by comparing the difference in the texture evolved between asymmetric and symmetric hot rolling. The effect of asymmetric hot rolling on the texture of primary recrystallized Fe-3%Si steel was also studied. The symmetric hot rolling of Fe-3%Si steel produces a rotated cube texture at the center but Goss and copper textures near the surface. Asymmetric hot rolling tends to produce Goss and copper textures even at the center like the texture near the surface. After primary recrystallization, the dominant texture at the center changes from {001} <210> to {111} <112> and the new texture has a higher fraction of the grains which make the low energy boundary with Goss grains than that of symmetric hot rolling.