• Title/Summary/Keyword: Cube Structures

Search Result 78, Processing Time 0.031 seconds

A VR-based Tile Display System for the Distributed Visualization (분산 가시화를 위한 가상현실 타일 디스플레이 시스템의 개발)

  • Cha, Moo-Hyun;Lee, Jae-Kyung;Hwang, Jin-Sang;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.167-177
    • /
    • 2010
  • In recent years, the use of high-resolution tiled display system which does not have restrictions on the size of the screen and implements various layout of tile is increasing in order to evaluate the digital mock-up in physical scale or explore large engineering data set in detail. In this study, we developed multi-channel distributed visualization system which provides a virtual reality-based visual contents using 3D open-source graphics engine. Efficient data structures and exchange methods were proposed as a scene synchronization technology in PC cluster environments. DLP-Cube based tiled visualization system which provides $5{\times}2$ layout of display wall was developed and we validated our approach using this system. In addition, we introduced integrated control program that administrates PC cluster environment in remote and controls the layout of display channels.

Wind pressure measurements on a cube subjected to pulsed impinging jet flow

  • Mason, M.S.;James, D.L.;Letchford, C.W.
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.

Computer modeling of tornado forces on buildings

  • Selvam, R. Panneer;Millett, Paul C.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.209-220
    • /
    • 2003
  • A tornado changes its wind speed and direction rapidly; therefore, it is difficult to study the effects of a tornado on buildings in a wind tunnel. In this work, the status of the tornado-structure interaction is surveyed by numerical simulation. Various models of the tornado wind field found in literature are surveyed. Three-dimensional computer modeling work using the turbulence model based on large eddy simulation is presented. The effect of tornado on a cubic building is considered for this study. The Navier-Stokes (NS) equations are approximated by finite difference method, and solved by a semi-implicit procedure. The force coefficients are plotted in time to study the effect of the Rankine-Combined Vortex Model. Some flow visualizations are also reported to understand the flow behavior around the cube.

Effect of Specimen Sizes and Shapes on Compressive Strength of Concrete (콘크리트의 압축강도에 공시체의 크기와 형상이 미치는 영향)

  • 최중철;양은익;이성태;김명유;이광교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.285-288
    • /
    • 2003
  • The compressive strength of concrete is used as the most fundamental and important material property when reinforced concrete structures are designed. It has been problem to use this value, however, because the control specimen sizes and shapes are different from every country. In this study, the effect of specimen shapes and sizes on compressive strength of concrete members was experimentally investigated based on fracture mechanics. Experiments for the mode I failure was earned out by using cylinder, cube, and prism specimens. The test results are curve fitted using least square method(LSM) to obtain the new parameters for the modified size effect law(MSEL). The analysis results show that the effect of specimen sizes and shapes on ultimate strength is apparent. The results also show stronger size effect in member when the casting direction is perpendicular to loading direction

  • PDF

Kinematics of the Envelope and Two Bipolar Jets in L1157

  • Kwon, Woojin;Fernandez-Lopez, Manuel;Stephens, Ian W.;Looney, Leslie W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.72.3-72.3
    • /
    • 2016
  • A massive envelope and a strong bipolar outflow are the two most distinct structures of youngest protostellar systems. We present observational results from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) toward the youngest (Class 0) protostellar system L1157. At an angular resolution of 5 arcseconds, we mapped its well-developed outflow in CO 2-1 over a span of approximately 5 arcminutes. Additionally, we imaged the central envelope with CO isotopes, CS, CN, and N2H+ with an angular resolution of about 2 arcseconds. We show that the bipolar outflow may be represented with a two jet model and constrain its physical properties such as precession/rotation directions, velocities, inclinations, and position angles via cube data fitting. In addition, we discuss the kinematic features of the envelope detected in CO isotopes and N2H+ and present the radius-dependent dust opacity spectral index.

  • PDF

A Study on Speed Improvement of Medical Image Reconstruction (의료영상 재구성의 속도개선에 관한 연구)

  • Ryu, Jong-Hyun;Beack, Seung-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2489-2491
    • /
    • 1998
  • The study of 3D image reconstruction re has developed along the progress of computer. Therfore Great deal of research on it have been done. 3D medical image reconstruction techniques are useful to figure out human's complex 3D structures from the set of 2D section. But 3D medical image reconstruction require a lot of calculation, it takes long time and expensive system. That gives a reason to the improvement of study on speed. In this paper. applying the interpolation to only the part which can appear as cube, I come up with a method that calculates the speed by reducing the a mount of calculation.

  • PDF

LED Effect : Interior Element Design (LED 조명을 이용한 실내요소 제품디자인)

  • Kim, Sun-Young
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • This study suggests experimental designs for interior products utilizing LEDs that are ideal for expressing diversity of light. It also attempts to develop various products by incorporating economic efficiency and diverse colors of LEDs into interior elements. LED door handles offer a range of 6-color LED lighting strips as a safety lighting system, while multi-function furniture (CUBE-scape) consists of LEDs with double-sided emitted lighting on completely transparent track structures. Both products are designed to make interior elements more user-friendly as they make most use of unique effects of LED such as light vibration and changes. Also the combination of plastic material-Technogel$^{\circledR}$, polypropylene, polycarbonate- maximize the LED lighting effect and diversify the designed item selection.

  • PDF

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.