• 제목/요약/키워드: Cube Structures

검색결과 78건 처리시간 0.019초

Experimental and finite element parametric investigations of the thermal behavior of CBGB

  • Numan, Hesham A.;Taysi, Nildim;Ozakca, Mustafa
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.813-832
    • /
    • 2016
  • This research deals with the behavior of Composite Box Girder Bridges (CBGBs) subjected to environmental effects such as solar radiation, atmospheric temperature, and wind speed. It is based on temperature and thermal stress results, which were recorded hourly from a full-scale experimental CBGB segment and Finite Element (FE) thermal analysis. The Hemi-cube method was adopted to achieve the accuracy in temperature distributions and variations in a composition system during the daily environmental variations. Analytical findings were compared with the experimental measurements, and a good agreement was found. On the other hand, parametric investigations are carried out to investigate the effect of the cross-section geometry and orientation of the longitudinal axis of CBGB on the thermal response and stress distributions. Based upon individual parametric investigations, some remarks related to the thermal loading parameters were submitted. Additionally, some observations about the CBGB configurations were identified, which must be taken into account in the design process. Finally, this research indicates that the design temperature distribution with a uniform differential between the concrete slab and the steel girder is inappropriate for describing the thermal impacts in design objective.

초음파 분무 열분해법을 이용한 구리산화물 박막 성장 (Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method)

  • 한인섭;박일규
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.516-521
    • /
    • 2018
  • Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

Theoretical Study of Various Unit Models for Biomedical Application

  • Choi, Jeongho
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.387-394
    • /
    • 2019
  • This paper presents an analytical study on the strength and stiffness of various types of truss structures. The applied models are triangular-like opened truss-wall triangular model (OTT), closed truss-wall triangular model (CTT), opened solid-wall triangular model (OST), and hypercube models defined as core-filled or core-spaced cube. The models are analyzed by numerical model analysis using DEFORM 2D/3D tool with AISI 304 stainless steel. Then, the ideal solutions for stiffness and strength are defined. Finally, the relative elastic modulus of the core-spaced model is obtained as 0.0009, which is correlated with the cancellous bone for the relative density range of 0.029-0.03, and the relative elastic modulus for the core-filled model is obtained as 0.0015, which is correlated with cancellous bone for the relative density range of 0.035-0.036. For the relative compressive yield strength, the OTT reasonably agrees with the cancellous bone for the relative density of 0.042 and the relative compressive strength of 0.05. The CTT and OST are in good agreement at the relative density of 0.013 and the relative compressive yield strength of 0.002. The hypercube models can be used for the cancellous bone for stiffness, and the triangular models can be used for the cancellous bone for strength. However, none of the models can be used to replace the compact bone because it requires much higher stiffness and strength. In the near future, compact bone replacement must be further studied. In addition, previously mentioned models should be developed further.

증승개방법(增乘開方法)과 다항방정식(多項方程式)의 해(解) (Zengcheng Kaifangfa and Zeros of Polynomials)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제33권6호
    • /
    • pp.303-314
    • /
    • 2020
  • Extending the method of extractions of square and cube roots in Jiuzhang Suanshu, Jia Xian introduced zengcheng kaifangfa in the 11th century. The process of zengcheng kaifangfa is exactly the same with that in Ruffini-Horner method introduced in the 19th century. The latter is based on the synthetic divisions, but zengcheng kaifangfa uses the binomial expansions. Since zengcheng kaifangfa is based on binomial expansions, traditional mathematicians in East Asia could not relate the fact that solutions of polynomial equation p(x) = 0 are determined by the linear factorization of p(x). The purpose of this paper is to reveal the difference between the mathematical structures of zengcheng kaifangfa and Ruffini-Honer method. For this object, we first discuss the reasons for zengcheng kaifangfa having difficulties to connect solutions with linear factors. Furthermore, investigating multiple solutions of equations constructed by tianyuanshu, we show differences between two methods and the structure of word problems in the East Asian mathematics.

Finite element computer simulation of twinning caused by plastic deformation of sheet metal

  • Fuyuan Dong;Wang Xu;Zhengnan Wu;Junfeng Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.601-613
    • /
    • 2023
  • Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • 제32권6호
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구 (An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type)

  • 정우태;박영환;박종섭
    • 대한토목학회논문집
    • /
    • 제31권4A호
    • /
    • pp.279-286
    • /
    • 2011
  • FRP 긴장재는 PS 강연선의 부식 문제를 해결하기 위한 대안으로써 사용될 수 있으며, FRP 긴장재의 재료특성(부착강도, 인장강도, 전달길이 등)은 구조물에 적용하기 위해서 결정되어야 한다. 재료특성 중에 부착은 FRP 긴장재로 긴장된 PSC 구조물에 적용하기 위해 명확하게 요구되어야 한다. 이 연구는 다양한 표면형상을 갖는 FRP 보강재의 부착특성을 연구하였다. 콘크리트의 철근과 강연선 대신에 사용되는 FRP 재료의 부착특성을 결정하기 위해 CAN/CSA S806-02에서 제안된 직접인발 시험을 수행하였다. 강연선, 이형 철근, 6가지 다른 표면 형상을 갖는 탄소 또는 유리섬유 FRP 보강재에 대하여 총 40개의 시편이 제작되었다. 부착실험 결과 각 실험체의 다양한 부착응력-슬립 곡선을 나타냈고, 국내에서 제작된 CFRP 긴장재의 부착특성과 비교하였다.

분산/병렬 시스템을 위한 최소화의 오류-허용 방사형 그래프 설계 (Minimum Design of Fault-Tolerant Arrangement Graph for Distributed &Parallel System)

  • 전문석;이문구
    • 한국정보처리학회논문지
    • /
    • 제5권12호
    • /
    • pp.3088-3098
    • /
    • 1998
  • 순열 방사형 그래프는 병렬 또는 분산 시스템의 상호 연결망 구조로써 n-큐브의 새로운 대안으로 제시되고 있다. 그러나 최근까지 제시된 구조(메쉬, 하이퍼큐브 등)에 대한 오류 허용 설계 모델은 많이 연구되어왔지만 순열 방사형 그래프에 적합한 오류 허용 설계 모델은 연구되고 있지 않다. 따라서 본 논문에서는 순열 방사형 그래프에 적합한 새로운 오류 허용 설계방법을 제안하였다. 이 방법은 현재 수행중인 구성 요소 중에서 오류가 발생할 때 기존 구조를 유지하기 위해서, 예비 구성요소를 추가하여 적절히 오류 요소를 대치하는 기법이다. 먼저, 순열 방사형 그래프를 순환 그래프로 변환한 다음 순환 그래프의 준 동형 성질을 이용하였다. 또한 k개 예비프로세서를 추가하여 각 프로세서 당 최대 통신 링크를 최소화함으로써 오류 허용 설계구조의 비용을 최적화 하였다. 특히, 최대 통신 링크의 수를 최소화하는 새로운 연구 방법을 제안하였다.

  • PDF