• Title/Summary/Keyword: CuSn Alloys

Search Result 134, Processing Time 0.025 seconds

Manufacturing Techniques of Ancient Metal Buddha Statues from Archaeological Sites in Bagan, Myanmar

  • Lee, Jae Sung;Win, Yee Yee;Lee, Bonnie;Yu, Jae Eun
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.309-316
    • /
    • 2019
  • This study intends to identify manufacturing techniques, including casting and alloy composition, of nine metal Buddha statues excavated from archaeological sites in Bagan, Myanmar. Two Buddha statues from Pyu city state(2nd to 9th century) contain Cu-Sn alloy(including <1 wt% Fe), with different relatively high percentages of Sn(16 wt% and 25 wt%) identified from each Buddha statue, and no Pb detected. Five Buddha statues from the Bagan dynasty contain various alloy ratios of Cu-Sn(including <1 wt% Pb), Cu-Sn-Pb, and Cu-Sn-Zn-Pb. All Buddha statues appear to be fabricated by casting, as there is no evidence of other heat treatments. The silver Buddha statue manufactured in the 18th century includes >1% Cu besides silver with no additional metallic components identified. The bronze Buddha statue manufactured in the Konbaung dynasty(18th century) is of Cu-Sn-Pb alloy. The Buddha statues of Pyu was alloy of Cu-Sn without Pb including ahigh percentage of The Buddha statues of both the Bagan and Konbaung dynasties are comprised of ternary Cu-Sn-Pb alloys, with a heterogeneous distribution of lead and tin. Some of Buddha statues of the Bagan dynasty have similar alloy ratios as those of Pyu, suggesting that similar manufacturing techniques were used.

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Wettability Evaluation of Sn-0.3Ag-0.7Cu Solder Alloy with Different Flux Activity and Indium Addition (플럭스 활성도 및 In 첨가에 따른 Sn-0.3Ag-0.7Cu 솔더 조성의 젖음 특성 변화)

  • Yu, A-Mi;Kim, Jun-Ki;Kim, Mok-Soon;Hyun, Chang-Yong;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.51-57
    • /
    • 2008
  • In this paper, wetting and interfacial reaction properties for low Ag containing Sn-Ag-Cu Pb-free solder alloy, i.e., Sn-0.3Ag-0.7Cu were investigated and compared with those of Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu. Melting behavior and stress-strain curves of some Sn-xAg-xCu alloys were also measured using a differential scanning calorimeter(DSC) and a tensile test machine, respectively. In order to enhance insufficient wetting properties of Sn-0.3Ag-0.7Cu alloy, the improvement of wetting properties were analyzed by applying fluxes containing higher content of halide or indium adding of 0.2wt.% into the solder alloy. It was concluded that the small addition of indium is more effective for the improvement of wettability in low temperature range of $230{\sim}240^{\circ}C$ than applying flux containing higher content of halide.

  • PDF

Mechanical and Physical Property Changes of Cu-Ni-Si-Sn-Fe-P Copper Alloy System According to the Heat Treatment Conditions (열처리조건에 따른 Cu-Ni-Si-Sn-Fe-P 석출경화형 동합금계의 물성변화 특성)

  • Kim, Seung-Ho;Yum, Young-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.225-232
    • /
    • 2013
  • The influence of aging treatment, addition elements and rolling reduction ratio on the microstructure, mechanical, electrical and bendability properties of Cu-Ni-Si-P-x (x = Fe, Sn, Zn) alloys for connector material application was investigated. SEM/EDS analysis exhibited that Ni2-Si precipitates with a size of 20~100 nm were distributed in grains. Fe, Sn, Zn elemnets in Cu-Ni-Si-P alloy imporved the mechanical strength but it was not favor in increasing of electrical conductivity. As higher final rolling reduction ratio, the strength and electrical conductivity is increased after aging treatment, but it indicated excellent bendability. Especially, Cu-2Ni-0.4Si-0.5Sn-0.1Fe-0.03P alloy show the tensile strength value of 700MPa and the electrical conductivity was observed to reach a maximum of 40%IACS. It is optimal for lead frame and connector.

Effects of Alloying Elements on the Tensile Strength and Electrical Conductivity of Cu-Fe-P Based Alloys (Cu-Fe-P계 합금의 강도 및 전기전도도에 미치는 첨가 원소의 영향)

  • Kim, Dae-Hyun;Lee, Kwang-Hak
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm $Mg_3P_2$ precipitation phase was observed having lattice parameter $a:12.01{\AA}$ such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.

Effect of Alloying Elements Si, S, Cu, Sn, and Ni on Oxidation of Low Carbon Steels between 1050 and 1180℃ in Air (저탄소강의 대기중 1050~1180℃의 산화에 미치는 합금원소 Si, S, Cu, Sn, Ni의 영향)

  • Bak, Sang Hwan;Lee, Dong Bok;Baek, Seon-Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.749-756
    • /
    • 2010
  • Low carbon steels were oxidized isothermally at 1050 and $1180^{\circ}C$ for 4 hr in air in order to determine the effect of alloying elements Si, S, Cu, Sn, and Ni on oxidation. For oxidation resistance of low carbon steels, the beneficial elements were Si, Cu, and Ni, whereas the harmful elements were S and Sn. The most active alloying element, Si, was scattered inside the oxide scale, at the scale-alloy interface, and as an internal oxide precipitate. The relatively noble elements such as Cu and Ni tended to weakly segregate at the scale-alloy interface. Sulfur and Sn were weakly, uniformly distributed inside the oxide scale. Excessively thick, non-adherent scales containing interconnected pores formed at $1180^{\circ}C$.

An experimental study of the strength and internal structure of solder joint of fixed partial denture (가공의치(架工義齒) 납착부(蠟着部)의 강도(强度)와 내부구조(內部構造)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sang-Nam;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.39-59
    • /
    • 1985
  • The purpose of this study was to investigate how gap distances of 0.13mm, 0.15mm, 0.20mm, and 0.30mm affects solder joint strength from gold alloys and nickel-chromium base alloys and to examine the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys. The tensile test specimens were prepared in the split stainless steel mold with a half dumbbell shape 2.5mm in diameter and l2mm in length. 6 pairs of specimens of each gap distance group of gold alloys and nickel-chromium base alloys were made and 48 pairs of all specimens were soldered with solder gold of 666 fineness. All soldered specimens were machined to a uniform diameter and then a tensile load was applied at a cross-head speed of 0.10mm/min using Instron Universal Testing Machine, Model 1115. The fractured specimens at solder gold of solder joint fracture with each gap distance of 0.13mm, 0.15mm, 0.20mm, and 0.30mm were examined under the Scanning Electron Microscope, JSM-35c and the composition of solder gold, the solder joint of gold alloys and nickel-chromium base alloys was analyzed by Electron Probe Micro Analyzer. The results of this study were obtained as follows: 1. In case of soldering of gold alloys, the tensile strength between gold alloys showed $37.33{\pm}2.52kg/mm^2$ at 0.13, $39.14{\pm}3.35kg/mm^2$ at 0.15mm, $43.76{\pm}2.97kg/mm^2$ at 0.20mm, and $49.18{\pm}4.60kg/mm^2$ at 0.30mm. There was statistically significant difference at each gap distance, and so the greater increase of gap distance showed the greater tensile strength. 2. In case of soldering of nickel-chromium base alloys, the tensile strength between nickel-chromium base alloys showed $34.84{\pm}4.26kg/mm^2$ at 0.13mm, $37.25{\pm}2.49kg/mm^2$ at 0.15mm, $42.91{\pm}4.32kg/mm^2$ at 0.20mm, and $46.93{\pm}4.21kg/mm^2$ at 0.30mm. There was not statistically significant difference only between 0.13mm and 0.15mm and bet ween 0.20 mm and 0.30mm, but generally the greater increase of gap distance showed the greater tensile strength. 3. The greater increase of gap distance shoed less porosities in solder gold at solder joint fracture. 4. In solder gold Au, Cu, Ag, Zn, and Sn were composed and Au and Cu were mostly distributed uniformly. 5. In solder joints of solder gold and gold alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Au, Cu, Ag, Pt, and Pd were composed in gold alloys. Au and Cu of solder gold and gold alloys were mostly distributed uniformly and the diffusion of other elements except Pt and Pd around the solder joint was not almost found. In solder joints of solder gold and nickel-chromium base alloys Au, Cu, Ag, Zn, and Sn were composed in solder gold and Ni, Cr, and Al were composed in nickel-chromium base alloys. Au and Cu of solder gold and Ni and Cr of nickel-chromium base alloys were mostly distributed uniformly and the diffusion of other elements except Cr around the solder joint was not almost found.

  • PDF

Characteristics of SAC305 and Nano-Particle Dispersed Solders (SAC305 및 나노 입자 분산 솔더의 특성)

  • Kim, Jang Baeg;Seo, Seong Min;Kang, Hye Jun;Cho, Do Hoon;Rajendran, Sri Harini;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • Sn-3wt%Ag-0.5wt%Cu (SAC305) solder is most popular solder in electronics industry. However, SAC305 has also drawbacks such as growth of β-Sn phase, intermetallic compounds (IMCs) of Ag3Sn, Cu6Sn5 and Cu3Sn which can result in deterioration of solder joints in terms of metallurgically, mechanically and electrically. Thus, improvement of SAC305 solders have been investigated continuously by addition of alloying elements, nano-particles and etc. In this paper, recent improvements of SAC solders including nano-composite alloys and related solderabilty and metallurgical and mechanical properties are investigated.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Effect of Melting and Pouring Conditions on Structures of Leaded Tin Bronze Castings (연청동주물(鉛靑銅鑄物)의 조직(組織)에 미치는 용해(熔解) 및 주입조건(鑄入條件)의 영향(影響)에 관한 연구(硏究))

  • Lee, W.W.;Choi, C.O.
    • Journal of Korea Foundry Society
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 1987
  • The effects of melting and casting conditions on cast structures of Cu-Sn-Pb alloys were studied. Specimens were prepared at different pouring temperatures of $1100^{\circ}C$ to $1260^{\circ}C$ with use of various kind of molds, green sand mold, $CO_2$ sand mold, shell mold, furan sand mold and metallic mold. (1) The transition of equiaxed to columnar structure greatly influenced by adding elements and mold binders. (2) The change of equiaxed structure according to pouring temperatures were expressed by separation theory. Lower pouring temperature and rapid cooling rate increase hardness and it's further increase was shown in the region of columnar structure. (3) Proper controls of pouring temperature, cooling rate and mold binder were important factors to improve wear properties of Cu-Sn-Pb alloys castings.

  • PDF