• Title/Summary/Keyword: CuO-PANI

Search Result 3, Processing Time 0.015 seconds

A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode (CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.196-201
    • /
    • 2023
  • In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline (PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a result, this electrode enhanced the H2O2 sensing performance.

Embargo Nature of CuO-PANI Composite Against Corrosion of Mild Steel in Low pH Medium

  • Selvaraj, P. Kamatchi;Sivakumar, S.;Selvaraj, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • Incorporation of CuO nanoparticles during the polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidizing agent and sodium salt of dodecylbenzene sulphonic acid as dopant as well as surfactant yielded water soluble CuO-PANI composite. Comparison of recorded spectra like FTIR, XRD and SEM with reported one confirm the formation of the composite. Analysis by gravimetric method exposes that the synthesized composite is having resistivity against corrosion, with slight variation in efficiency on extending the time duration up to eight hours in strong acidic condition. OCP measurement, potentiodynamic polarization and EIS studies also confirms the suppression ability of composite against corrosion. Riskless working environment could be provided by the synthesized composite during industrial cleaning process.

Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor (표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.147-152
    • /
    • 2024
  • Most medical sensors are disposable products. In order to reduce inspection and diagnosis costs, it is more important to develop the inexpensive electrode materials. We fabricated the CuO NPs/PANI/E-PGE as an electrode material for disposable electrochemical sensors and applied it to a non-enzymatic glucose sensor. For surface activation of PGE, pretreatment was performed using chemical and electrochemical methods, respectively. Electrochemical properties according to the pretreatment method were analyzed through chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance (EIS). From these analytical results, the electrochemically pretreated PGE (E-PGE) was finally adopted. The non-enzymatic glucose sensor based on CuO NPs/PANI/E-PGE shows sensitivity of 239.18 mA/mM×cm2 (in a linear range of 0.282~2.112 mM) and 36.99 mA/mM×cm2 (3.75423~50 mM), detection limit of 17.6 μM and good selectivity. Based on the results of this study, it was confirmed that the modified PGE is a high-performance electrode material. Therefore, these electrodes can be applied to a variety of disposable sensors.