• 제목/요약/키워드: Cu-sheet

검색결과 164건 처리시간 0.032초

구리 기저 층이 In2O3/Cu 박막의 광학적, 전기적 특성에 미치는 영향 (Effect of the Cu Bottom Layer on the Optical and Electrical Properties of In2O3/Cu Thin Films)

  • 김대일
    • 한국진공학회지
    • /
    • 제20권5호
    • /
    • pp.356-360
    • /
    • 2011
  • 유리 기판 위에 RF와 DC 마그네트론 스퍼터링 방법으로 100 nm 두께의 $In_2O_3$ 단층 박막과 $In_2O_3$ 100 nm/Cu 3 nm의 두께를 갖는 적층박막을 증착하고, 구리 기저 층 증착에 따른 상부 $In_2O_3$ 박막의 광학적, 전기적 특성의 변화를 연구하였다. 상온에서 증착 된 $In_2O_3$ 박막의 가시광 투과도와 면 저항은 79%와 2,300 ${\Omega}/{\square}$이었다. 구리 기저 층의 광 흡수에 의하여, $In_2O_3$/Cu 적층박막의 가시광 투과도는 71%로 감소하였으나, 면 저항은 110 ${\Omega}/{\square}$로 측정되어 상대적으로 우수한 전기적 특성을 구할 수 있었다. 본 연구에서 Figure of Merit 분석을 통하여 구리 기저 층이 상부 $In_2O_3$ 투명전극의 전기적, 광학적 특성을 개선 할 수 있음을 확인하였다.

Cu 함유 TRIP형 고장력 강판의 잔류오스테나이트 및 인장특성에 관한 연구 (A Study on the Retained Austenite and Tensile Properties of TRIP Type High Strength Steel Sheet with Cu)

  • 강창룡;김효정;김한군;성장현;문원진
    • 열처리공학회지
    • /
    • 제12권3호
    • /
    • pp.231-239
    • /
    • 1999
  • Volume fraction and morphology of retained austenite, tensile properties of TRIP type high strength steel sheet with Fe-C-Si-Mn-Cu chemical composition have been investigated. The retained austenite of granular, bar and film type existing in specimen was obtained after intercritical annealing and austempering. The granular type retained austenite increased with increase of intercritical annealing and austempering temperature. With increase of intercritical annealing temperature, retained austenite and carbon contents increased. Maximum contents of retained austenite was obtained by austempering at $400^{\circ}C$. The maximum tensile strength was obtained by austempering at $450^{\circ}C$ and maximum elongation was obtained at $400^{\circ}C$. T.S${\times}$E.L value increased with increase of retained austenite contents due to the elongation strongly controlled by contents of retained austenite, but tensile strength was affected with various factors such as bainitic structure etc.

  • PDF

초음파 가공에 의한 Ni-Cu 박판의 용착 특성 평가 (Evaluation on Welding Characteristic of Ni-Cu Sheet by Ultrasonic Machining)

  • 백시영;장성민
    • 한국산학기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.1070-1077
    • /
    • 2011
  • 본 논문은 초음파 가공에 의한 용착성을 가공조건의 영향에 관하여 나타내었다. 한파장 혼의 최적화를 이용한 Ni-Cu 이종금속 박판의 용착성 평가는 초음파 가공 방법을 이용하여 확인된다. 초음파 가공변수 설정에 따른 인장시험을 통한 최적의 용착조건을 제시하였으며 SEM 사진과 EDX-ray 분석에 의한 용착성을 평가하였다. 실험적 연구는 초음파 가공 후 인장강도의 측정, SEM사진 분석으로 수행된다. 또한 가공시간, 가압력, 진폭의 가공변수들은 본 연구에 적용되었다.

Ab Initio Investigations of Shapes of the h-BN Flakes on Copper Surface in Relation to h-BN Sheet Growth

  • Ryou, Junga;Hong, Suklyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.210.1-210.1
    • /
    • 2014
  • The hexagonal boron nitride (h-BN) sheet, a 2D material like graphene sheet, is comprised of boron and nitrogen atoms. Similar to graphene, h-BN sheet has attractive mechanical properties while it has a wide band gap unlike graphene. Recently, many experimental groups studied the growth of single BN layer by chemical vapor deposition (CVD) method on the copper substrate. To study the initial stage of h-BN growth on the copper surface, we have performed density functional theory calculations. We investigate several adsorption sites of a boron or nitride atom on the Cu surfaces. Then, by increasing the number of adsorbed B and N atoms, we study formation behaviors of the BN flakes on the surface. Several types of BN flakes atoms such as triangular, linear, and hexagonal shapes are considered on the copper surface. We find that the formation of the BN flake in triangular shape is most favorable on the surface. On the basis of the theoretical results, we discuss the growth mechanism of h-BN layer on the copper surfaces in terms of its shapes in the initial stage of growth.

  • PDF

Ni-Zn-Cu계 페라이트 시트에서 충진 밀도에 따른 시트 휨 현상 (The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets)

  • 김시연;여동훈;신효순;송우창;윤호규
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.781-786
    • /
    • 2015
  • It is necessary for ferrite sheets to be fabricated with high packing density for excellent electrical properties and high strength. In this study, the relationship between the warpage and the packing density of ferrite green sheet, was investigated with amount variation of organic additives. With 0.4 wt% of dispersant, the packing density was about 48% and warpage appeared 0.5~1.3 mm high. With 1.4 wt% of dispersant, the packing density increased up to 57% and warpage appeared 0.8~2.1 mm high. With high packing density, warpage appeared along the edges of specimen, while with low packing density, deformation appeared over whole specimen inhomogeneously. It is thought that inhomogeneous deformation after sintering came from the inhomogeneity in green sheet prepared with badly dispersed slurry. With good homogeneity in green sheet from well-dispersed slurry, isotropic shrinkage is thought to have occurred along the distance from center to edges of specimen during sintering.

용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여- (A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode-)

  • 박재우;김용덕;황응림;김선진;강성군
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal)

  • 조욱제;윤태진;곽승윤;이재형;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Characterization of a Crystallized ZnO/CuSn/ZnO Multilayer Film Deposited with Low Temperature Magnetron Sputtering

  • Kim, Dae-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권5호
    • /
    • pp.169-172
    • /
    • 2009
  • The ZnO/CuSn/ZnO (ZCSZ) multilayer films were deposited on polycarbonate substrates using reactive RF and DC magnetron sputtering. The thickness of each layer was 50 nm/5 nm/45 nm, respectively. The ZCSZ films showed a sheet resistance of $44{\Omega}$/Sq, which was an order of magnitude lower than that indium tin oxide (ITO) films. Although the ZCSZ films had a CuSn interlayer that absorbed visible light, both films had similar optical transmittances of 74% in the visible wavelength region. The figure of merit of the ZCSZ films was $1.0{\times}10^{-3}{\Omega}^{-1}$ and was greater than the value of the ITO films, $1.6{\times}10^{-4}{\Omega}^{-1}$. From the X-ray diffraction (XRD) analysis, the ITO films did not show any diffraction peaks, whereas the ZCSZ films showed diffraction peaks for the ZnO (100) and (002) phases. The hardness of the ITO and ZCSZ films were 5.8 and 7.1 GPa, respectively, which were determined using nano-indentation. From these results, the ZCSZ films exhibited greater optoelectrical performance and hardness compared to the conventional ITO films.