Ab Initio Investigations of Shapes of the h-BN Flakes on Copper Surface in Relation to h-BN Sheet Growth

  • Ryou, Junga (Graphene Research Institute and Department of Physics, Sejong University) ;
  • Hong, Suklyun (Graphene Research Institute and Department of Physics, Sejong University)
  • Published : 2014.02.10

Abstract

The hexagonal boron nitride (h-BN) sheet, a 2D material like graphene sheet, is comprised of boron and nitrogen atoms. Similar to graphene, h-BN sheet has attractive mechanical properties while it has a wide band gap unlike graphene. Recently, many experimental groups studied the growth of single BN layer by chemical vapor deposition (CVD) method on the copper substrate. To study the initial stage of h-BN growth on the copper surface, we have performed density functional theory calculations. We investigate several adsorption sites of a boron or nitride atom on the Cu surfaces. Then, by increasing the number of adsorbed B and N atoms, we study formation behaviors of the BN flakes on the surface. Several types of BN flakes atoms such as triangular, linear, and hexagonal shapes are considered on the copper surface. We find that the formation of the BN flake in triangular shape is most favorable on the surface. On the basis of the theoretical results, we discuss the growth mechanism of h-BN layer on the copper surfaces in terms of its shapes in the initial stage of growth.

Keywords