• Title/Summary/Keyword: Cu-doped ZnO

Search Result 52, Processing Time 0.028 seconds

Preparation and Dissolution Properties of the Trace Elements doped ${K_2}O$-CaO-${P_2}{O_5}$ Glasses (미량원소함유 ${K_2}O$-CaO-${P_2}{O_5}$유리의 제조 및 용출 특성)

  • Lee, Hoi-Kwan;Kang, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.144-148
    • /
    • 2005
  • At the previous papers, we showed that ${K_2}O$-CaO-${P_2}{O_5}$ glasses had a solubility in air so that they could be used for glass fertilizer. In this work, we fabricated the Eco-glass fertilizer containing trace elements of B, Mg, Zn, Fe, Cu, Co, Mo, the needed micronutrients for plants to grow, by a melt-quenching process. The dissolution properties in these glasses were investigated with a pH meter and an ICP analyzer. The trace elements doped glasses showed similar behavior in dissolutions and stability properties with the mother glass without containing trace elements. In addition, the dissolution amount of each trace elements depends on the mother glass composition and the quantity of each trace elements, which determine the dissolving velocity of chemical elements.

  • PDF

Effect of MoSe2 on Contact Resistance of ZnO/Mo Junction in Cu(In,Ga)Se2 Thin Film Solar Module (MoSe2가 Cu(In,Ga)Se2 박막 태양전지 모듈의 ZnO/Mo 접합의 접촉 저항에 미치는 영향)

  • Cho, Sung Wook;Kim, A Hyun;Lee, Gyeong A;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.102-106
    • /
    • 2020
  • In this paper, the effect of MoSe2 on the contact resistance (RC) of the transparent conducting oxide (TCO) and Mo junction in the scribed P2 region of the Cu(In,Ga)Se2 (CIGS) solar module was analyzed. The CIGS/Mo junction becomes ohmic-contact by MoSe2, so the formation of the MoSe2 layer is essential. However, the CIGS solar module has a TCO/MoSe2/Mo junction in the P2 region due to structural differences from the cell. The contact resistance (RC) of the P2 region was calculated using the transmission line method, and MoSe2 was confirmed to increase RC of the TCO/Mo junction. B doped ZnO (BZO) was used as TCO, and when BZO/MoSe2 junction was formed, conduction band offset (CBO) of 0.6 eV was generated due to the difference in their electron affinities. It is expected that this CBO acts as a carrier transport barrier that disturbs the flow of current, resulting in increased RC. In order to reduce the RC caused by CBO, MoSe2 must be made thin in a CIGS solar module.

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

Optoelectrical properties of IGZO/Cu bi-layered films deposited with DC and RF magnetron sputtering

  • joo, Moon hyun;hyun, Oh-jung;Son, Dong-Il;Kim, Daeil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.178.2-178.2
    • /
    • 2015
  • In and Ga doped ZnO (IGZO) films were deposited on 5 nm thick Cu film buffered Polycarbonate (PC) substrates with RF magnetron sputtering and then the effect of Cu buffer layer on the optical and electrical properties of the films was investigated. While IGZO single layer films show the electrical resistivity of $1.2{\times}10-1{\Omega}cm$, IGZO/Cu bi-layered films show a lower resistivity of $1.6{\times}10-3{\Omega}cm$. Although the optical transmittance of the films in a visible wave length range is deteriorated by Cu buffer layer, IGZO films with 5 nm thick Cu buffer layer show the higher figure of merit of $2.6{\times}10-4{\Omega}-1$ than that of the IGZO single layer films due to the enhanced opto-electrical performance of the IGZO/Cu bi-layered films.

  • PDF

Dielectric and Magnetic Properties of Co-doped Ni0.65Zn0.35Fe2O4 Thin Films Prepared by Using a Sol-gel Method

  • Lee, Hyun-Sook;Lee, Jae-Gwang;Baek, K.S.;Oak, H.N.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.138-141
    • /
    • 2003
  • $Ni_{0.65}Zn_{0.35}Fe_2O_4$thin films were prepared by using a sol-gel method. Their crystallographic, dielectric and magnetic properties were investigated as a function of Cu contents by means of an X-ray diffractometer (XRD), X-ray reflectivity, LCZ meter (NF2232), a vibrating sample magnetometer (VSM), and an atomic force microscope (AFM). From typical C-V measurements for $Ni_{0.65}Zn_{0.35}Fe_2O_4$ thin films on p-type silicon substrate, the surface charge density was calculated as 1.4 ${\mu}$C/$m^2$. The dielectric constant evaluated from the capacitance at the accumulation state was 28. The high $H_{c}$ and low $M_{sat}$ at x=0.0 and 0.1 were due to the growth of the ${\alpha}$-$Fe_2O_3$ phase having antiferromagnetic properties. The rapidly decreased $H_{c}$ and increased $M_{sat}$ at x=0.2 and 0.3 can be explained that the ${\alpha}$-$Fe_2O_3$ phases have completely disappeared at x=0.3 and so, non-magnetic defects are minimized. The $M_{sat}$ was slightly decreased and the $H_{c}$ was increased above at x=0.3 because the increase of grain boundary due to smaller grain size acts as defects during magnetization process.

Physical Properties of PNN-PMN-PZT Doped with Zinc Oxide and CLBO for Ultrasonic Transducer

  • Yoo, Juhyun;Kim, Tahee;Lee, Eunsup;Choi, Nak-Gu;Jeong, Hoy-Seung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.334-337
    • /
    • 2017
  • In this paper, to develop the ceramics with high $d_{33}$ and high $Q_m$ for ultrasonic transducer applications, $0.10Pb(Ni_{1/3}Nb_{2/3})O_3-0.07Pb(Mn_{1/3}Nb_{2/3})O_3-0.83Pb(Zr_{0.5}Ti_{0.5})_{0.83}O_3$ (PNN-PMN-PZT) ceramics were sintered at $940^{\circ}C$ using $CuO-Li_2CO_3-Bi_2O_3$ (CLBO) as a sintering aid by a traditional solid-state technique. The influence of zinc oxide additive on the physical properties of the prepared ceramics were systematically investigated. The R-T (rhombohedral-tetragonal) phase coexistence was found in the ceramics without zinc oxide additive and with increasing amounts of ZnO additive, the specimens showed a tetragonal phase. The formation of a liquid phase between ZnO and $Bi_2O_3$ contributed significantly to the grain growth of specimens. For the 0.1 wt% ZnO ceramics, the optimal physical properties of $d_{33}=370pC/N$, ${\varepsilon}_r=1,344$, $k_p=0.621$, and $Q_m=1,523$ were obtained.

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

CIGS thin film solar cells prepared by one-step sputtering using a quaternary compound target (4성분계 화합물 타겟을 이용한 단일공정 스퍼터링에 의한 CIGS 박막태양전지)

  • Kim, Tae-Won;Park, Jae-Cheol;Park, Sin-Yeong;Song, Guk-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Se 원소가 포함된 $CuIn_xGa_{1-x}Se_2$(CIGS) 단일 스퍼터링 타겟을 이용하여 후처리 공정없이 단일 스퍼터링 공정만으로 CIGS 흡수층 박막을 증착하여 소자 특성을 확인하였다. 단일 CIGS 흡수층 공정이 적용된 CIGS 박막태양전지 소자(유리기판/Mo/단일 CIGS 흡수층 박막/CdS/i-ZnO/Al-doped ZnO/Ni-Al grid)에서 10.0%의 태양광 변환 효을을 달성하였으며, 이는 기존의 복잡한 공정구조를 해결하여 대면적 양산화 CIGS 제조 공정에도 적용할 수 있음을 확인하였다.

  • PDF

Fabrication and Characteristics of Electroluminescent Lamp (전계발광램프의 제작 및 특성)

  • 박욱동;최규만;최병진;김기완
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.101-105
    • /
    • 1994
  • The EL lamp have been fabricated by screen printing method. the thickness of BaTiO$_3$ dielectric layer and ZnS:Cu phosphor layer was 20 $\mu$m and 40 $\mu$m, respectively. The threshold voltage of green El lamp was 50 $V_{p-p}$ and the maximum brightness was 13.5 $\mu$ W/cm$^2$ at frequency of 700 Hz and the input voltage of 250 $V_{p-p}$. Also when the Rodamin G6 of 0.02 g was doped, the threshold voltage of white EL lamp was 70 $V_{p-p}$ and the maximum brightness was 34 $\mu$W/cm$^2$.

  • PDF