• Title/Summary/Keyword: Cu-10Fe alloy

Search Result 161, Processing Time 0.027 seconds

Microstructure of Sn-Ag-Cu Pb-free solder (Sn-Ag-Cu 무연합금의 미세구조 분석)

  • Lee, Jung-Il;Lee, Ho Jun;Yoon, Yo Han;Lee, Ju Yeon;Cho, Hyun Su;Cho, Hyun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.94-98
    • /
    • 2017
  • In the past few years, Sn-3.0Ag-0.5Cu (weight%) solder composition has been a representative material to electronic industries as a replacement of Pb-base solder alloy. Therefore, extensive studies on process and/or reliability related with the composition have been reported. However, recent rapid rise in Ag price has demanded solder compositions of low Ag content. In this study, Sn-3.0Ag-0.5Cu solder bar sample was fabricated by melting of Sn, Ag and Cu metal powders. Crystal structure and element concentration were analyzed by XRD, optical microscope, FE-SEM and EDS. The Sn-3.0Ag-0.5Cu solder sample was composed of ${\beta}$-Sn, ${\varepsilon}-Ag_3Sn$ and ${\eta}-Cu_6Sn_5$ phases.

Effects of Zn and Mg Amounts on the Properties of High Thermal Conductivity Al-Zn-Mg-Fe Alloys for Die Casting (다이캐스팅용 고열전도도 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • The effects of Zn and Mg amounts on the solidification characteristics, microstructure, thermal conductivity and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high thermal conductivity aluminium alloys for die casting. Zn and Mg amounts in Al-Zn-Mg-Fe alloys had a little effect on the liquidus / solidus temperature, the latent heat for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by JMatPro program showed $MgZn_2$, AlCuMgZn and Al3Fe phases on microstructure of their alloys. Increase of Zn and Mg amounts in Al-Zn-Mg-Fe alloys resulted in gradual reduction of the thermal conductivity of their alloys. Increase of Mg amounts in Al-2%Zn-Mg-Fe alloys had little effect on the tensile strength of their alloys, but increase of Mg amounts in Al-4%Zn-Mg-Fe alloys resulted in steep increase of the tensile strength of their alloys.

Effects of Iron and Silicon Additions on the Microstructures and Mechanical Properties of Aluminium Bronze (알루미늄 청동의 미세조직과 기계적 성질에 미치는 Fe 및 Si 첨가의 영향)

  • Kim, Jee-Hwan;Kim, Ji-Tae;Kim, Jin-Han;Park, Heung-Il;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of Fe and Si additions on the microstructures and mechanical properties of aluminum bronze have been investigated. In a bar-type specimen cast in a die mold, the addition of Fe promoted the dendritic solidification of the ${\alpha}$ phase. The hardness values increased slightly in the Fe-added specimen with heat treatment, while these values was increased significantly in the specimens with Si or with combined additions of Fe and Si. When a centrifugal casting bush with combined addition of Fe and Si was heat treated, the FeSi compound within the matrix was finely dispersed, and was observed to be the origin of cup-cone type conical dimple failure in the tensile fracture surface. The mechanical properties of the heat treated centrifugal casting bushes, whose nominal alloy compositions were (Cu-7.0Al-0.8Fe-3.0Si)wt%, exhibited tensile strength of $703-781N/mm^2$, elongation of 6.6-11.7% and hardness of Hv 222.6-249.2. These high values of strength and elongation were attributed to the strengthening of the matrix due to the combined addition of Fe and Si, and to precipitation of fine the FeSi compound.

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

$M\"{o}ssbsuer$ Effect Study of Nanocrystalline $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ Alloy (초미세결정립 $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ 합금의 뫼스바우어 효과 연구)

  • 김재경;신영남;양재석
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.864-873
    • /
    • 1995
  • Amorphous $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ ribbons were annealed for different time at $500^{\circ}C$ and $552^{\circ}C$, just before and after the exothermic reaction in DSC curve. The development of nanocrystalline phase was investigated by means of $M\"{o}ssbsuer$ spectroscopy. The crystalline phase consists mainly of $DO_{3}Fe-Si$. Though slight in amount (5%), another ferromagnetic phase which could be presumed $t-Fe_{3}B$ was detected Si content of $DO_{3}Fe-Si$, Si/(Fe+Si), was 0.218 under the heat treatment at $500^{\circ}C$ for 60 min and 0.222 at $552^{\circ}C$ for 10 min. Since then both of those values decreased with time until 120 min and finally these two values remained constant at 0.210. The variation in Si content with annealing time results in the variation in the hyperfine field and the isomer shift. The increase in the mean hyperfine fields and the decrease in the mean isomer shifts of Fe-Si are caused by the increase in Si content. The volume fractions of residual amorphous phase rapidly decrease during the early stage of annealing and come nearer to saturation after 120 min both at $500^{\circ}C$ and $552^{\circ}C$. The decrease in the mean hyperfine field of residual amorphous. in spite of slight changes in the volume fractions of Fe-Si and of residual amorphous after 120 min. is caused by the increase in the content of Nb and B in residual amorphous phase. The saturated volume fraction of the crystalline phase was 81% for $500^{\circ}C$ (180 min) and 77% for $552^{\circ}C$ (960 min), different from expectation.

  • PDF

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

A Study of the Development of a High-Strength Al-Zn Based Alloy for Die Casting I (고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 I)

  • Shin, Sang-Soo;Yeom, Gil-Yong;Kim, Eok-Soo;Lim, Kyung-Mook
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • Al-Zn based alloys are the most common types of wrought Al alloys. Although Al-Zn alloys have high strength, they cannot be applied to a conventional casting process. In this study, Al-Zn-based alloys applicable to a die casting process were developed successfully. The developed Al-45 wt% Zn-based alloys showed a fine equiaxed grain structure and high strength. A fine equiaxed grain having an average size of $25{\mu}m$ was obtained by the die casting process. The UTS and elongation of the new alloy are 475 MPa and ~3.5%, respectively. In addition, we elucidate the effect of a Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al96.3-xZnxCu3Si0.4Fe0.3) x=20, 30, 40, and 45 wt% alloys fabricated by a die casting process.

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy mixed with a Ferrite Powder (Fe계 나노결정립 분말과 페라이트 복합체의 전자파 흡수특성)

  • Koo, S.K.;Lee, M.H.;Moon, B.G.;Song, Y.S.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.292-296
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties of the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.