• Title/Summary/Keyword: Cu wire

Search Result 205, Processing Time 0.025 seconds

Performance Evaluation on the Reinforcing Material of Plastic Composites for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 플라스틱 복합재료용(複合材料用) 강화재(强化材)의 성능평가(性能評價))

  • Kim, Dong-Jin;Murakami, Ri-ichi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1048-1054
    • /
    • 1999
  • It is important to study the shielding effectiveness(SE) of reinforcing material of plastic composite materials against the electromagnetic(EM) waves. In this paper, SE of the shielding material of EM waves was investigated with actual experiments. The materials used in this study were made up of film, fiber and powder of conductive materials - Cu, Al, CF etc. Also, The resin film was used as matrix. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that copper, aluminum and carbon fiber were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of interval of wires on the SE were studied when the orientation and the space of Cu wires were changed. The SE strongly depended on the. orientation and the space of the Cu wire. SE decreased as the space of the Cu wires was increasing.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

Evaluation of Mechanical Property and Fatigue Damage in A Practical Superconducting Cable for Magnet (초전도 마그네트용 실용 초전도 복합선재의 기계적 특성 및 피로손상 평가에 관한 연구)

  • Sin, Hyeong-Seop;O, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.761-768
    • /
    • 2000
  • In order to investigate how the fatigue damage effects on the critical properties of superconductor, a fatigue test at room temperature and an Ic measurement test at 4.2K were carried out in this study, respectively, using a 9 strand Cu-Ni/NbTi/Cu composite cable. Through the fatigue test of a 9 strand Cu-NUNbTi/Cu composite cable, a conventional S-N curve was plotted even though there was a possibility of fretting among strands. It was found that the maximum stress corresponding to the inflection point on the S-N curve obtained was nearly the same value as the yielding strength of cable obtained from the static tensile test. However, the effect of cabling in multi-strands superconducting cable on the fatigue strength was not noticeable. The critical current(Ic) measurement was carried out at 4.2K in a NbTi strand out of the fatigued cable. It showed a degradation of lc at high stress amplitude regions over 380NTa, and the degradation became significant as the applied stress amplitude increased.

TSV Filling Technology using Cu Electrodeposition (Cu 전해도금을 이용한 TSV 충전 기술)

  • Kee, Se-Ho;Shin, Ji-Oh;Jung, Il-Ho;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

Formation of Ultrafine Grains in Cu-Fe-P Alloy by Accumulative Roll-Bonding Process (ARB법에 의한 Cu-Fe-P합금의 초미세결정립 형성)

  • Lee, Seong-Hee;Han, Seung-Zeon;Kim, Hyoung-Wook;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.432-436
    • /
    • 2009
  • A Cu-Fe-P copper alloy was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two 1mm thick copper sheets, 30 mm wide and 300 mm long, were first degreased and wire-brushed for sound bonding. The sheets were then stacked on top of each other and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet was then cut into two pieces of the same dimensions and the same procedure was repeated for the sheets up to eight cycles. Microstructural evolution of the copper alloy with the number of the ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy(TEM), and electron back scatter diffraction(EBSD). The grain size decreased gradually with the number of ARB cycles, and was reduced to 290 nm after eight cycles. The boundaries above 60% of ultrafine grains formed exhibited high angle boundaries above 15 degrees. In addition, the average misorientation angle of ultrafine grains was 30 degrees.

Influence of Ge addition on phase formation and electromagnetic properties in internal tin processed $Nb_3$Sn wires (내부 확산법에 의한 $Nb_3$Sn초전도선에 Ge 첨가에 따른 임계전류 및 미세조직 변화)

  • 하동우;오상수;이남진;하홍수;권영길;류강식;백홍구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.496-499
    • /
    • 2000
  • In order to investigate the effect of Ge addition to the Cu Matrix on the microstructure and the critical current density, four kinds of internal tin processed Nb$_3$Sn strands with pure Cu and Cu 0.2, 0.4, 0.6 wt% Ge alloy were drawn to 0.8 mm diameter. The microstructure and critical current of internal tin processed Nb$_3$Sn wires that were heat treated at temperatures ranging from 68$0^{\circ}C$ to 74$0^{\circ}C$ for 240 h were investigated. The Ge addition to the matrix did not make workability worse. A Ge rich layer in the Cu-Ge matrix suppressed the growth of the Nb$_3$Sn layer and promoted grain coarsening. The greater the Ge content in the matrix, the lower the net Jc result after Nb$_3$Sn reaction heat treatment. There was no significant variation in Jc observed with heat treatment temperature ranging from 68$0^{\circ}C$ to 74$0^{\circ}C$.

  • PDF

Microstructure and Hardness of 1st layer with Crystallographic Orientation of Solidification Structure in Multipass Weld using High Mn-Ni Flux Cored Wire (고(<24%)Mn 플럭스코어드와이어를 사용한 다층 용접 시 초층 응고조직의 결정면방위에 따른 미세조직과 경도)

  • Han, Il-Wook;Eom, Jung-Bok;Yun, Joong-Gil;Lee, Bong-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.77-82
    • /
    • 2016
  • In this study, Microstructure and hardness of 1st layer with crystallographic orientation were investigated about solidification structure in multipass weld using high Mn-Ni flux cored wire. Microstructure of solidification consisted of austenite matrix and a little ${\varepsilon}-phase$ in grain boundaries. Orientation of grains was usually (001), (101), (111). According to crystallographic orientation, morphology of primary dendrite was different. The depletion of Fe and the segregation of Mn, C, Ni, Si, Cu, Cr, O were found along the grain boundaries. The area of segregation was wide with an order of (001), (101), (111) grains. And hardness of grains with crystallographic orientation increased with an order of (001), (101), (111) grains because of the segregation along dendrite boundary.

Bi-2223/Ag HTS Drawing Process Study for Uniform Deformation I (Bi-2223/Ag 고온초전도선재의 가공균일성에 미치는 인발공정연구 I)

  • Kim, S.C.;Ha, H.S.;Oh, S.S.;Lee, D.H.;Yang, J.S.;Ha, D.W.;Kwon, Y.K.;Han, L.Y.;Lee, J.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.55-58
    • /
    • 2002
  • PIT method which is used at fabricating Bi-2223/Ag HTS wire includes a drawing process, conventional deformation method. Drawing of meta1(Ag) and ceramic (BiSrCaCuO) composite is also difficult and significant for uniform deformation. In this paper, parameters of uniform deformation was studied at Bi-2223/ Ag multifilamentary HTS wire. Powder and rod as a starting precursor was compared at 55 filament and 54 filament Bi-2223/Ag HTS wire, respectively. Micro-hardness and area COV of the filaments was also evaluated when the diameters were decreased through drawing operations.

  • PDF

A Study on the Short Circuit Current and Molten Mark Analysis of Polyvinyl Chloride Insulated Flexible Cords (비닐코드의 단락전류 및 용융흔 분석에 관한 연구)

  • Choi, Chung-Seog;You, Sun-Hee;Yoo, Jae-Geun;Shong, Kil-Mok;Kim, Hyang-Kon;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1630-1632
    • /
    • 1999
  • In this paper, we studied the short circuit current and molten mark of polyvinyl chloride insulated flexible cords(VFF). The calory decreased remarkably with increase of current. The surface structure and composition of a strand wire were analyzed by stereoscope, scanning electron microscope (SEM), and energy dispersive x-ray spectroscopy(EDX). The surface of a strand wire showed columnar and void. The intensity of CuL spectrum increased in melted mark.

  • PDF

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).