• Title/Summary/Keyword: Cu stress

Search Result 534, Processing Time 0.032 seconds

Inactivation of Escherichia coli and MS2 coliphage by Cu(II)-activated peroxomonosulfate in natural water

  • Kim, Hyung-Eun;Lee, Hye-Jin;Kim, Min Sik;Choi, Joon-Young;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • Peroxymonosulfate (PMS) in combination with Cu(II) was examined to inactivate E. coli and MS2 coliphage in natural water. The combined system (i.e., the Cu(II)/PMS system) caused a synergistic inactivation of E. coli and MS2, in contrast with either Cu(II) or PMS alone. Increasing the concentration of PMS enhanced the inactivation of E. coli and MS2, but after a certain point, it decreased the efficacy of the microbial inactivation. In the Cu(II)/PMS system, adding reactive oxidant scavengers marginally affected the E. coli inactivation, but the inhibitory effects of copper-chelating agents were significant. Fluorescent assays indicated that the Cu(II)/PMS system greatly increased the level of reactive oxidants inside the E. coli cells. The sequential addition of Cu(II) and PMS inactivated more E. coli than did adding the two simultaneously; in particular, the inactivation efficacy was much higher when Cu(II) was added first. The observations from the study collectively showed that the microbial inactivation by the Cu(II)/PMS system could be attributed to the toxicity of Cu(I) as well as the intracellular oxidative stress induced by Cu(III) or radical species.

Inactivation of Copper, Zinc Superoxide Dismutase by the Lipid Peroxidation Products Malondialdehyde and 4-Hydroxynonenal

  • Koh, Young-Ho;Yoon, Seon-Joo;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.440-444
    • /
    • 1999
  • Membrane lipid peroxidation processes yield reactive aldehydes that may react with copper,zinc superoxide dismutase (Cu,Zn SOD), one of the key antioxidant enzymes against oxidative stress. We investigated this possibility and found that exposing Cu,Zn SOD to malondialdehyde (MDA) or 4-hydroxynonenal (HNE) caused the loss of dismutase activity, cross-linking of peptides, and an increase in protein oxidation, reflected by the increased level of carbonyl groups. When Cu,Zn SOD that had been exposed to MDA or HNE was subsequently analyzed by amino acid analysis, histidine content was found to be significantly lost. Both MDA-and HNE-treated Cu,Zn SOD were resistant to proteolysis, which may imply that damaged proteins exist in vivo for a longer period of time than the native enzyme. The lipid peroxidation-mediated damage to Cu,Zn SOD may result in the perturbation of cellular antioxidant defense mechanisms, and subsequently lead to a pro-oxidant condition.

  • PDF

Electrical and Mechanical Properties of Cu(Mg) Film for ULSI Interconnect (고집적 반도체 배선용 Cu(Mg) 박막의 전기적, 기계적 특성 평가)

  • 안재수;안정욱;주영창;이제훈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.89-98
    • /
    • 2003
  • The electrical and mechanical properties of sputtered Cu(Mg) films are investigated for highly reliable interconnects. The roughness, adhesion, hardness and resistance to thermal stress of Cu(Mg) film annealed in vacuum at $400^{\circ}C$ for 30min were improved than those of pure Cu film. Moreover, the flat band voltage(V$_{F}$ ) shift in the Capacitance-Voltage(C-V) curve upon bias temperature stressing(BTS) was not observed and leakage currents of Cu(Mg) into $SiO_2$ were three times less than those of pure Cu. Because Mg was easy to react with oxide than Cu and Si after annealing, the Mg Oxide which formed at surface and interface served as a passivation layer as well.

  • PDF

Reliability Improvement of Cu/Low K Flip-chip Packaging Using Underfill Materials (언더필 재료를 사용하는 Cu/Low-K 플립 칩 패키지 공정에서 신뢰성 향상 연구)

  • Hong, Seok-Yoon;Jin, Se-Min;Yi, Jae-Won;Cho, Seong-Hwan;Doh, Jae-Cheon;Lee, Hai-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.19-25
    • /
    • 2011
  • The size reduction of the semiconductor chip and the improvement of the electrical performance have been enabled through the introduction of the Cu/Low-K process in modern electronic industries. However, Cu/Low-K has a disadvantage of the physical properties that is weaker than materials used for existing semiconductor manufacture process. It causes many problems in chip manufacturing and package processes. Especially, the delamination between the Cu layer and the low-K dielectric layer is a main defect after the temperature cycles. Since the Cu/Low-K layer is located on the top of the pad of the flip chip, the stress on the flip chip affects the Cu/Low-K layer directly. Therefore, it is needed to improve the underfill process or materials. Especially, it becomes very important to select the underfill to decrease the stress at the flip-chip and to protect the solder bump. We have solved the delamination problem in a 90 nm Cu/Low-K flip-chip package after the temperature cycle by selecting an appropriate underfill.

Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process (초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막)

  • Park, Chae-Won;Gwon, Jin-Hyeong;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

Fabrication and Characteristics of Continuous W-Cu FGM by SPS/Infiltration Process (SPS/용침 공정에 의한 W-Cu연속경사기능재료의 제초와 특성)

  • 신철균;석명진;오승탁;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2004
  • W-Cu composite has been used for the applications requiring both high strength, good thermal and electrical conductivity. A graded combination of W and Cu will reduce thermal stress concerned with heat conduction, maintaining good thermal conductivity and high mechanical strength. In the present work, an attempt was made to fabricate continuous W-Cu FGM by preparing the graded porous structure of W skeleton using spark plasma sintering (SPS) process followed by infiltrating Cu. The graded porous structure was prepared at 150$0^{\circ}C$ for 60s under pressure of 15MPa by SPS process using a graphite mold with varying crr)ss section in the longitudinal direction. Infiltration of Cu was performed at 115$0^{\circ}C$ for 1 hour under $H_2$. W-Cu composite with graded Cu composition of 14 to 27 wt% was finally prepared. In this process the gradient of composition could be conveniently controlled by varying the gradient of cross sectional area of graphite mold, temperature and pressure.

Design of Copper Alloys Preventing Grain Boundary Precipitation of Copper Sulfide Particles for a Copper Disposal Canister

  • Minkyu Ahn;Jinwoo Park;Gyeongsik Yu;Jinhyuk Kim;Sangeun Kim;Dong-Keun Cho;Chansun Shin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • The major concern in the deep geological disposal of spent nuclear fuels include sulfide-induced corrosion and stress corrosion cracking of copper canisters. Sulfur diffusion into copper canisters may induce copper embrittlement by causing Cu2S particle formation along grain boundaries; these sulfide particles can act as crack initiation sites and eventually cause embrittlement. To prevent the formation of Cu2S along grain boundaries and sulfur-induced copper embrittlement, copper alloys are designed in this study. Alloying elements that can act as chemical anchors to suppress sulfur diffusion and the formation of Cu2S along grain boundaries are investigated based on the understanding of the microscopic mechanism of sulfur diffusion and Cu2S precipitation along grain boundaries. Copper alloy ingots are experimentally manufactured to validate the alloying elements. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy demonstrates that Cu2S particles are not formed at grain boundaries but randomly distributed within grains in all the vacuum arc-melted Cu alloys (Cu-Si, Cu-Ag, and Cu-Zr). Further studies will be conducted to evaluate the mechanical and corrosion properties of the developed Cu alloys.

Effect of Solidification Conditions and Heat Treatment on the Mechanical Properties of the $Al-CuAl_2$ Eutectic Composite (Al-$CuAl_2$ 공정복합재료의 기계적 성질에 미치는 응고조건과 열처리의 영향)

  • Lee, Hyun-Kyu;Lee, Ju-Hong;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.332-341
    • /
    • 1990
  • The structure and tensile properties of the unidirectionally solidified Al-33wt.%Cu alloy have been investigated. Casted Al-33wt.%Cu alloy was unidirectionally solidified with rates (R) between 1㎝/hr and 24cm/hr maintaining the thermal gradient(G) at solid-liquid interface, $32^{\circ}C/cm$ and $21^{\circ}C/cm$. The entectic struture was varied according to the growth condition(G/R radio). When G/R ratio was larger than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$ the lamellar structure was formed, and colony structure was formed when G/R ratio was smaller than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$. The interlamellar spacing(${\gamma}$) in the above alloy system was vaired with the growth rate(R) According to "${\gamma}^2{\cdot}R=8.8{\times}10^{-11}cm^2/sec$" relationship. The yield stress (${\sigma}$0.001) and UTS for samples in the as-grown condition increased with the interlamellar spacing decrease and the values corresponding to colony structure are lower than those corresponding to amellar structure with the same lamellar spacing. The yield stress for samples in aged condition did not change with the interlamellar spacing.

  • PDF

Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening (동합금의 워터캐비테이션피닝에 의한 내구성과 부식특성 평가)

  • Kim, Seong-Jong;Han, Min-Su;Kim, Min-Sung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.184-190
    • /
    • 2012
  • Cu alloy is widely used for marine applications due to its excellent ductility and high resistance for corrosion as wells as cavitation. However, long term exposure of the material to marine environments may result in damages caused by cavitation and corrosion. Water cavitation peening has been introduced in order to improve resistance of Cu alloy to corrosion and cavitation. The technology induces compressive residual stress onto the surface, and thus enhances the fatigue strength and life. In this study, the characteristics of the material were investigated by using water cavitaiton peening technique, and results showed that 2 minutes of water cavitation peening indicated the considerable improvement in hardness. On the other hand, over 10 minutes of water cavitation peening accelerated damages to the surface. In the case of ALBC3, water cavitation peening in the range of 2 to 10 minutes has shown the excellent durability and corrosion resistance while minimizing surface damages.