• Title/Summary/Keyword: Cu removal efficiency

Search Result 209, Processing Time 0.025 seconds

THE REMOVAL OF HEAVY METALS USING HYDROXYAPATITE

  • Lee, Chan-Ki;Kim, Hae-Suk;Kwon, Jae-Hyuk
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.205-212
    • /
    • 2005
  • The study was conducted to investigate the removal of heavy metals by using Hydroxyapatite(HAp) made from waste oyster shells and wastewater with high concentration of phosphorus. The maximum calcium concentration for the production of HAp in this study was released up to 361 mg/L at pH of 3 by elution experiments. When the pH was at adjusted 6, the maximum calcium released concentration was 41 mg/L. During the elution experiment, most of the calcium was released within 60 minutes. This reaction occurred at both pH levels of 3 and 6. The result of the XRD analysis for the HAp product used in this study shows the main constituent was HAp, as well as OCP. The pH was 8.6. As the temperature increased, the main constituent did not vary, however its structure was crystallized. When the pH was maintained at 3, the removal efficiency decreased as the heavy metal concentration increased. The order of removal efficiency was as follows: $Fe^{2+}$(92%), $Pb^{2+}$(92%) > $Cu^{2+}$(20%) > $Cd^{2+}$(0%). Most of these products were dissolved and did not produce sludge in the course of heavy metals removal. As the heavy metal concentration increased at pH of 6, the removal efficiency increased. The removal efficiencies in all heavy metals were over 80%. From the analysis of the sludge after reaction with heavy metals, the HAp was detected and the OCP peak was not observed. Moreover, lead ion was observed at the peaks of lead-Apatite and lead oxidant. In the case of cadmium, copper and iron ions, hydroxide forms of each ion were also detected.

Removal Efficiency of the Pollutants from Piggery Wastes with Activated Carbon Treated with Metal and Their Pilot Scale Design

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2006
  • The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as $Ag^+$, $Cu^{2+}$, $Na^+$, $K^+$ and $Mn^{2+}$, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.

  • PDF

Iron Oxide Coated Sand(ICS)의 중금속 흡착제거 특성

  • 최형진;양재규;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.379-381
    • /
    • 2003
  • Metal sorption onto the ICS (Iron oxide coated sand) was studied in batch experiments. Heavy metal cations such as Cd, Pb, and Cu, and a metal anion, As, which sporadically exist in mine sites, were tested for the sorptive removal by ICS. In low pH conditions As showed the highest removal efficiency compared to the other metal cations. And the sorption removal of As was apparently pH-independent reaction. However, removal of metal cations increased with pH and above pH 7 most metal cations showed very low soluble concentrations after treatment. Such a high removal ratio of metal cations above the neutral pH appeared predominantly due to precipitation.

  • PDF

Biosorption Characteristics of Heavy Metal by Algae, Spirulina in the Batch Reactor (회분식 반응기에서 조류 Spirulina 균체내 중금속 흡착 특성)

  • 신택수;주소영;김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.112-122
    • /
    • 1998
  • In recent years the accumulation of heavy metals in microorganisms, the biosorption has received much attention because of various environmental application. We have been to research the biosorption characteristics using algae, Spirulina, for the removal of heavy metal ions in industrial and polluted waters. In the adsorption of single heavy metal ions, the adsorption equilibrium was reached within 10min., and optimum pH and reaction temperature were 4.5-5 and 30-35$\circ $C, respectively. Under the above conditions, the maximum amounts of Pb, Cu, and Cd adsorbed to the unit weight of Spirulina were 107.6mg/g, 78.0mg/g, and 65.6mg/g, and three values were 1.45, 1.56, and 1.26 times higher than those adsorbed to the unit weight of activated carbon under same conditions. The adsorption kinetics of Pb, Cu, and Cd were fitted very well to the Freundlich isotherm and BET isotherm. Biosorption experiments in single ion solutions and binary ions solutions showed higher removal efficiency in the single ion solutions than in binary ions solutions.

  • PDF

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Removal Efficiency of Heavy Metals in Acidic Mine Drainage from Microbial Mats (바이오매트 형성에 의한 산성광산배수 내 중금속 유출질량 제거효율)

  • Yu, Hun-Sun;Kwon, Byung-Hyuk;Kim, Park-Sa;So, Yoon-Hwan;Kang, Dong-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.667-676
    • /
    • 2012
  • This research investigated to reduce mass of heavy metals in AMD(acid mine drainage) by microbial mats formed on the channel bed. As, Cd, Cu, Fe, Mn and Zn components were monitored in water and microbial mats, at three points (AMD1, AMD2 and AMD3), in a total of six times. Average daily discharge mass of heavy metals was highest in July, Fe component contained more than 76% of total discharge mass. Discharge mass of heavy metals of AMD and heavy metal contents in microbial mats decreased with downstream at channel. Heavy metal components that average daily discharge mass is over 0.5 kg were Fe, Cu and Zn, and they were highest in July. Average removal efficiency of heavy metals in AMD was highest about 21% in Fe, this microbial mats were due to form from precipitation of Fe component in AMD by aerobic iron bacteria. Relative content for As component in microbial mats than AMD was over 16 times, this As components were due to absorb at iron oxide and iron hydroxide on the surface of microbial mats.

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

Effects of Environmental Factors and Heavy Metals on the Growth and Phosphorus Removal of Alcaligenes sp. (환경인자와 중금속이 Alcaligenes sp.의 생장과 인 제거에 대한 영향)

  • Yoo, Ri-Bi;Kim, Hee-Jung;Lee, Seok-Eon;Lee, Moon-Soon;Woo, Sun-Hee;Choi, Jong-Soon;Baek, Ki-Tae;Chung, Keun-Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.216-222
    • /
    • 2011
  • BACKGROUND: This study was performed to evaluate the effects of environmental factors and heavy metals on the growth and phosphorus removal capacity of Alcaligenes sp., which was well known as one of PAOs(Phosphorus Accumulating Microorganisms). METHODS AND RESULTS: The environmental factors used in this study were temperature, pH and carbon sources, and the heavy metals included Cu, Cd, Zn, As, and Ni. The growth and P removal efficiency of Alcaligenes sp. was maximal as temperature, pH, and carbon source were $25^{\circ}C$, 7, and glucose+acetate, respectively. Also, the $IC_{50}$(median inhibitory Concentration) values of Alcaligenes sp. for the Cu, Cd, Zn, As, and Ni were 5.03, 0.08, 0.73, 282.20 and 4.74 mg/L, respectively. CONCLUSION(S): Based on the results obtained from this study, it appears that the growth and P removal efficiency of Alcaligenes sp. were affected by the environment factors and at the best optimum condition for its growth and P removal efficiency, as the concentrations of heavy metals were gradually increased, its growth was correspondingly decreased.

The application of multifunctional metal oxide for wastewater treatment: Adsorption and disinfection (다기능 금속산화물의 하수처리 적용-흡착 및 살균)

  • Kim, Heegon;Park, Duckshin;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.251-258
    • /
    • 2019
  • The physical treatment such as chemical precipitation or adsorption was usually added after biological treatment in wastewater treatment process since it was enforced to reduce the concentration of phosphate for wastewater effluent to 0.2 mg/L as P which was well known as one of main nutrient causing eutrophication in waterbody. Therefore, the new material functioned for both adsorption and disinfection was prepared with Fe and Cu, and $TiO_2$, respectively, by changing the ratio of concentration referred to tri-metal (TM). According to SEM-EDS, $TiO_2$ was 30~40% composition for any TM regardless of any synthesis condition. However, the ratio of composition for Fe and Cu was dependent on the initial Fe and Cu concentration, respectively. The removal efficiency of phosphate was obtained to 15% at low initial concentration and the maximum uptake (Q) was calculated to ~11 mg/g through Langmuir isotherm model using TM1 which was synthesized at 1000 mg/L, 1000 mg/L, and 2 g (10 g/L) for $Fe(NO_3)_3$, $Cu(NO_3)_2$, $TiO_2$, respectively. In disinfection test, the efficiency of virus removal using TM was increased with increase of dosage of TM and can be reached 98% at 0.2 g.

Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate (아세트산 에틸 제거를 위한 공침법 기반의 Cu 및 Mn 이종금속 촉매의 제조)

  • Kim, Min Jae;Yoon, Jo Hee;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 ℃) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 ℃.