• Title/Summary/Keyword: Cu metal

Search Result 3,364, Processing Time 0.03 seconds

A Study on the Formation Mechanism of Microconstituents in Brazed Joint of Duplex Stainless Steel and Cr-Cu Alloy (2상 스테인리스강과 크롬동합금의 브레이징부 생성상의 생성기구에 관한 연구)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.534-539
    • /
    • 2001
  • The formation mechanism of microconstituents in brazed joints of duplex stainless steel and Cr-Cu alloy which is an essential process of rocket engine manufacturing was investigated using Cu base insert metal. $SUS329J_3L$ and C18200 were used for base metal and AMS 4764 was used for insert metal. The brazing was carried out under various conditions. There were various phases in the joints, because of reaction between liquid insert metal and base metals. Since liquid insert metal reacts with duplex stainless steel, liquid Cu from insert metal infiltrated into the $\alpha/\beta$ interface of duplex stainless steel. Through the process of Cu infiltration, isolated stainless steel pieces come into the liquid insert metal. Since liquid insert metal reacts with Cr-Cu alloy. Cr precipitates from C18200 come into the liquid insert metal. With increment of bonding temperature and holding time, amounts and sizes of phases increased. but Cr-Mn compounds decreased at 1303k for 1.2ks and Mn-rich phases disappeared Fe-Cr compounds formed.

  • PDF

Evaluation of Aluminum and Copper Biosorption in Two-Metal System using Algal Biosorbent

  • Lee, Hak-Sung;Volesky, Bohumil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassun fluitans pretreated with NaOH is capable of taking up more than $10\%$ $(q_{max}$ : 3.85 mmol/g for Al and 1.48 mmol/g for Cu) of its dry weight in the Al and Cu at pH of 4.5. However, the maximum Al and Cu uptakes calculated from Langmuir isotherm were 1.58 mmol/g for Al and 1.35 mmol/g for Cu at pH 3.5. Equilibrium batch sorption study was performed using two-metal system containing Al and Cu. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal biosorption inhibition due to the influence of a second metal. NaOH-treated S. fluitans contained 2.19 mmol $(43\;wt.\%)$ carboxyl groups per gram of biomass. A modified form of Langmuir, which assumes binding of Cu as $Cu^{2+}$ and Al as $Al(OH)_2^+,$ was used to model the experimental data. This result agrees with the one of mono-valent sorption for Al in single-metal system. The modified Langmuir model gives the following affinity correlated coefficients: 0.196 for Cu and 6.820 for Ah at pH 4.5, and 2.904 for Cu and 3.131 for Al at pH 3.5. The interference of Al in Cu biosorptive uptake was assessed by `cutting' the three dimensional uptake isotherm surfaces at constant second-metal final concentrations. Equimolar final equilibrium concentrations of Cu and Al of 1 mM at pH 4.5 give Cu and hi uptakes reduced by $82.5\%\;and\;5.4\%,$ respectively. However, these values at pH 3.5 were $55\%\;(Cu)\;and\;31\%$ (Al).

  • PDF

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

A study on the development of Ti-Cu-Ni-Si insert metal for Ti alloys (Ti합금 접합용 Ti-Cu-Ni-Si계 삽입금속의 개발에 관한 연구)

  • 김경미;우인수;강정윤;이상래
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 1996
  • The purpose of this study is to develope an insert metal which can be brazed at lower temperature than the conventionally used insert metal and provide higher strength joint than base metal. In the review of binary phase diagram concerning Ti, Cu and Ni resulted in the discovery of Si having eutectic composition with them. The microstructure and the distribution of elements in reaction zone between CP Ti and insert metal were investigated by Optical Microscopy, SEM/EDX, EPMA, X-RAY. The newly developed insert metal is Ti-15wt%Cu-18wt%Ni-2wt%Si, which can yield the lower brazing temperature(1183K) compared with the conventional Ti-Cu-Ni system insert metal. The joints with this insert metal had tensile strength of 385MPa in the bonding temperature range of 1183K to 1243K.

  • PDF

Fabrication of the Cu-STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties (고강도 전자소자 리드프레임용 Cu/STS/Cu 클래드 메탈제조 및 물리적특성에 대한 열안정성 연구)

  • Kim, Il-Gwon;Son, Moon-Eui;Kim, Young-Sung
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.80-86
    • /
    • 2014
  • We have successfully fabricated high strengthening Cu/STS/Cu 3 layered clad metal of $70kgf/mm^2$ grade for electric device lead frame, and investigated thermal effect of the mechanical and physical properties on the Cu/STS/Cu 3 layered clad metal lead frame material at different temperatures ranging from RT to $200^{\circ}C$. The fabricated clad metal shows a good thermal stability under 6% degrading of mechanical tensile strength and hardness change at $200^{\circ}C$ and also physical properties show stable thermal and electrical conductance of over $220W/m{\cdot}K$ and 58.44% IACS upto the $200^{\circ}$. The results confirm that fabricated high strengthening Cu/STS/Cu 3 layered clad metal can be applied for the high performed electrical lead frame devices.

Effect of bark on the adsorption of heavy metal ions (2) - Effect of Pinus densiflora and Quercus mongolica barks on the adsorption of Cu and Cd ions - (수피(樹皮)에 의(衣)한 중금속(重金屬) 흡착효과(吸着效果)(2) - 소나무와 신갈나무 수피(樹皮)에 의한 Cu와 Cd의 흡착효과(吸着效果) -)

  • Paik, Ki-Hyon;Kim, Kyung-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 1986
  • This investigation involves a study of the physical and chemical factors of Pinus densiflora SIEB. et ZUCC. and Quercus mongolica Fisher barks affecting on the adsorption of heavy mteal ions. The results obtained can be summarized as follows. 1. The capacity of the untreated bark to remove the Cu and Cd from solution was similar to or 5% higher than that of formaldehyde treated bark in both species. Considering that untreated bark lead to color-leaching problem, bark treated with formaldehyde are economical. 2. With decreasing particle size of bark(20-80), the adsorption ratio of the Cu and Cd from solution was increased. Quercus bark adsorbed more Cu and Cd at smaller particle size compared to Pinus bark. 3. The heavy metal eqilibrium adsorption of the bark from Cu and Cd solution was attained within 10 min. Pinus bark removed about 48% of the Cu and 41% of the Cd from solution in 10 min while Quercus bark removed about 50% during that period. 4. As the initial metal concentration increased. the absolute metal uptake was increased while percentage removal was decreased. At the lower metal concentration (10 ppm). Pinus and Quercus barks removed 77-94% of the Cu and 72-84% of the Cd. At high metal concentration (200 ppm), the adsorption ratio was 40% Cu and 25% Cd, respectivelty. 5. The maximum adsorption of the Cu and Cd from solution was obtained at pH 5-6 in filtrate. 6. With increased bark weight per given metal concentration, absolute removal of metal ion from solution was increased, but the percentage removal was decreased. The amount of adsorption was 4.2 mg Cu and 4.2 mg Cd per gr. Pinus, bark and 5.4 mg Cu and 4.3 mg Cd per gr. Quercus bark, respectively.

  • PDF

Studies on the Metal-Exchange Reaction of Tetrahedral Cu(II) Complex with Mercuric Ion and Mercury Metal (정사면체 구조를 갖는 Cu(II) 착물과 수은(II) 및 수은(0)과의 금속 교환반응 연구)

  • Young Tae Gong;Sung Nak Choi;Yoon-Bo Shim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.223-229
    • /
    • 1992
  • Mechanistic studies on the metal-exchange reactions of sparteine copper(II) dichloride [$SpCuCl_2$] with Hg(II) ion and Hg(0) metal have been carried out with the aid of Cyclic Voltammetry and UV-visible spectrophotometry. The metal exchange reaction of $SpCuCl_2$ with both Hg(II) ion and Hg(0) metal follows pseudo-first order kinetics. Rate constants and activation parameters of metal exchange reaction have been evaluated and reported. Experimental results indicate that the rate determining step for the exchange reaction is the cleavage of Cu(II)-N bond in the transient binuclear complex of Cu(II) and mercury(II) bound to sparteine ligand.

  • PDF

이성분 중금속계에서 Chlorella sp. HA-1을 이용한 생물학적 흡착 특성

  • Lee, Jae-Yeong;Baek, Gi-Tae;Gwon, Tae-Sun;Yang, Ji-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.497-500
    • /
    • 2001
  • Adsorption characteristics on the biomass of Chlorella sp. HA -1 were investigated in binary system with $Pb^2$, $Cu^2$, $Cd^2$, and $Zn^2$ ions. For the adsorption tests of single metal, Langmuir model was showed good correlation for equilibrium data compared to Freundlich model. Maximum metal uptakes increased as follows: $Pb^2$>$Cd^2$>$Zn^2$>$Cu^2$, whereas the affinity showed different trends: $Cu^2$>>$Cd^2$>$Zn^2$>$Pb^2$. In binary metal system, $Cu^2$ ions inhibited sharply the adsorption of other metal ions except $Pb^2$ ions because of the high biosorption affinity of $Cu^2$ ions. In the case of $Cu^2$ and $Pb^2$ system, there was no significant inhibition on metal uptakes. The results of metal adsorption in the binary system could be explained well on the basis of Langmuir parameters evaluated.

  • PDF

Effects of Sputter Deposition Sequence and Sulfurization Process of Cu, Zn, Sn on Properties of Cu2ZnSnS4 Solar Cell Material (Cu, Zn, Sn의 스퍼터링 적층방법과 황화 열처리공정이 Cu2ZnSnS4 태양전지재료 특성에 미치는 효과)

  • Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.304-308
    • /
    • 2013
  • The effect of a sputter deposition sequence of Cu, Zn, and Sn metal layers on the properties of $Cu_2ZnSnS_4$ (CZTS) was systematically studied for solar cell applications. The set of Cu/Sn/Zn/Cu multi metal films was deposited on a Mo/$SiO_2$/Si wafer using dc sputtering. CZTS films were prepared through a sulfurization process of the Cu/Sn/Zn/Cu metal layers at $500^{\circ}C$ in a $H_2S$ gas environment. $H_2S$ (0.1%) gas of 200 standard cubic centimeters per minute was supplied in the cold-wall sulfurization reactor. The metal film prepared by one-cycle deposition of Cu(360 nm)/Sn(400 nm)/Zn(400 nm)/Cu(440 nm) had a relatively rough surface due to a well-developed columnar structure growth. A dense and smooth metal surface was achieved for two- or three-cycle deposition of Cu/Sn/Zn/Cu, in which each metal layer thickness was decreased to 200 nm. Moreover, the three-cycle deposition sample showed the best CZTS kesterite structures after 5 hr sulfurization treatment. The two- and three-cycle Cu/Sn/Zn/Cu samples showed high-efficient photoluminescence (PL) spectra after a 3 hr sulfurization treatment, wheres the one-cycle sample yielded poor PL efficiency. The PL spectra of the three-cycle sample showed a broad peak in the range of 700-1000 nm, peaked at 870 nm (1.425 eV). This result is in good agreement with the reported bandgap energy of CZTS.

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF