• 제목/요약/키워드: Cu matrix

검색결과 443건 처리시간 0.023초

Cu-Si 기지금속을 사용한 교류용 초전도선재 제조 및 특성 (Fabrication and characteristics of NbTi superconducting wires with Cu-Si matrix for AC use)

  • 하동우;오상수;오봉환;권영길;조전욱;류강식;한일용;백홍구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1165-1167
    • /
    • 1995
  • The Cu-Si alloy has been proposed as a new matrix materal for filamentary Nb-Ti wires in AC use. The Cu-Si alloy shows approprite mechanical and electrical properties, and is economically more favourable than the Cu-Ni alloy matrix used currently. Moreover, the addition of Si to Cu prevents the formation of intermetallic compounds around the filaments. After we investigated resistivity and hardness of Cu-Si alloy as matrix materal, investigated CuSi/NbTi interface reactions and superconductivities of superconducting wires that were made by various heat treatment.

  • PDF

Cu-50%Cr 분말성형체의 치밀화 및 소결체 물성 (Densification of Cu-50%Cr Powder Compacts and Properties of the Sintered Compacts)

  • 김미진;정재필;도정만;박종구;홍경태
    • 한국분말재료학회지
    • /
    • 제7권4호
    • /
    • pp.218-227
    • /
    • 2000
  • It is well known that the Cu-Cr alloys are very difficult to be made by conventional sintering methods. This difficulty originates both from limited solubility of Cr in the Cu matrix and from limited sintering temperature due to high vapor pressures of Cr and Cu components at the high temperature. Densification of Cu-50%Cr Powder compacts by conventional Powder metallurgy Process has been studied. Three kinds of sintering methods were tested in order to obtain high-density sintered compacts. Completely densified Cu-Cr compacts could be obtained neither by solid state sintering method nor by liquid phase sintering method. Both low degree of shrinkage and evolution of large pores in the Cu matrix during the solid state sintering are attributed to the anchoring effect of large Cr particles, which inhibits homogeneous densification of Cu matrix and induces pore generation in the Cu matrix. In addition, the effect of undiffusible gas coming from the reduction of Cu-oxide and Cr-oxide was observed during liquid phase sintering. A two-step sintering method, solid state sintering followed by liquid phase sintering, was proved to have beneficial effect on the fabrication of high-dendsity Cu-Cr sintered compacts. The sintered compacts have properties similar to those of commercial products.

  • PDF

유도결합 플라즈마 발광분광기의 매트릭스 보정법에 의한 구리 중납, 카드뮴 및 크롬 분석에 관한 연구 (The Study on Analytical Method of Lead, Cadmium and Chromium in Copper Metal by Matrix Matching Method of Inductively Coupled Plasma Atomic Emission Spectrometer)

  • 주성균;김준;정남용;임규철;최영환;김상경
    • 대한화학회지
    • /
    • 제53권3호
    • /
    • pp.293-301
    • /
    • 2009
  • 일정 농도의 Pb, Cd 및 Cr이 첨가된 합성 Cu표준시료용액 (RMs)을 ICP로 여러 파장에서 Cu매트릭스 미 보정 검정곡선에 준하여 분석한 결과 모든 원소가 전 파장에서 Cu매트릭스의 영향을 받아 정확도 (Pb 140$\sim$1 090%)가 떨어졌다. Pb, Cd 및 Cr의 각각 일정 농도에 Cu의 농도를 변화시켜 분석한 결과 Cu 0.05 wt/v % (0.05 g/100 mL) 이상을 함유하면 실제 Pb, Cd 및 Cr이 첨가된 농도보다 Cu의 농도가 증가함에 따라 일정함수의 비로 감소하거나 증가하여 Cu매트릭스의 영향이 심함을 볼 수 있었다. Cu매트릭스 보정법에 의한 합성 Cu표준시료용액 (RMs)을 분석한 결과 99.9% 이상의 정확도를 보여주었다.

탄소섬유 강화 Cu 기지 금속 복합재료의 Squeeze Cast 조직 및 내마멸특성 (Microstructure and Wear Properties of Squeeze Cast Carbon Fiber/Copper Alloy Metal Matrix Composite)

  • 김남수;지동철;조경목;박익민
    • 한국주조공학회지
    • /
    • 제12권3호
    • /
    • pp.238-247
    • /
    • 1992
  • A carbon fiber(CF) reinforced Cu-10%Sn alloy matrix composite was successfully fabricated by squeeze casting method employing preheated graphite mold and proper process controlling factors. The matrix solidification microstructure of the Cu-10%Sn/CF composite reveals ${\alpha}-dendrite$ and ${\alpha}+{\delta}$ eutectoid. To compare the squeeze cast Cu-10%Sn/CF compostie with PM route fabricated Cu-graphite composites for electric contact material, mechanical wear and electrical arc wear tests were performed. Mechanical wear rate of the Cu-10%Sn/CF is much lower than that of the Cu-graphite composite. Weight loss with a variation of contact number in electrical arc wear tests shows a similar trend between the squeeze cast Cu-10%Sn/CF and PM Cu-graphite composites.

  • PDF

분자수준 혼합공정을 이용한 탄소나노튜브/Cu 나노복합재료의 제조 및 특성평가 (Fabrication and Characterization of Carbon Nanotube/Cu Nanocomposites by Molecular Level Mixing Process)

  • 김경태;차승일;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2005
  • Since the first discovery of carbon nanotube (CNT) in 1991, a window to new technological areas has been opened. One of the emerging applications of CNTs is the reinforcement of composite materials to overcome the performance limits of conventional materials. However, because of the difficulties in distributing CNTs homogeneously in metal or ceramic matrix by means of traditional composite processes, it has been doubted whether CNTs can really reinforce metals or ceramics. In this study, CNT reinforced Cu matrix nanocomposite is fabricated by a novel fabrication process named molecular level mixing process. This process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows to be 3 times higher strength and 2 times higher Young’s modulus than Cu matrix. This extra-ordinary strengthening effect of carbon nanotubes in metal is higher than that of any other reinforcement ever used for metal matrix composites.

  • PDF

탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성 (Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber)

  • 김민경;한준현
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.626-634
    • /
    • 2021
  • Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.

CuCl 미립자 분산 붕괴산염계 비선형 광학유리에서 매질유리의 상분리와 CuCl 미립자의 석출 특성 (Phase Separation of Matrix Glasses and Precipitation Characteristics of CuCl Nanocrystals in CuCl Doped Borosilicate Glasses for Nonlinear Optical Application)

  • 윤영권;한원택
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.886-896
    • /
    • 1997
  • To investigate an effect of phase separation on precipitation characteristics of CuCl nanocrystals in CuCl doped nonlinear optical glasses, borosilicate glass systems with 9 different compositions with ~2wt% of CuCl were selected and CuCl doped glasses were prepared by melting and precipitation method. Microstructural properties of the CuCl doped glasses were analyzed by optical absorption spectroscopy, acid elution test, TEM, and EDXS. While phase separation did not occur in Glass A~D, interconnected and droplet microstructures due to phase separation were found in Glass E, F and Glass G~I, respectively. In the particular composition of the matrix glasses in this study, the precipitation of the CuCl particles was observed in the phase separable glasses, not in phase non-separable glasses. The CuCl particles were precipitated in both silica-rich phase region and boronrich phase region of the glass matrix. In the case of 7.7Na2O-36.6B2O3-52.7SiO2(mole%) glass, the larger CuCl particles than those in the silica-rich phase region were observed in the boron-rich phase region.

  • PDF

Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화 (The consolidation of CNT/Cu mixture powder using equal channel angular pressing)

  • 윤승채;팜쾅;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

습식 교반 및 방전 플라즈마 소결 공정에 의한 CNT 분산 Cu 복합재료 제조 (Fabrication of CNT dispersed Cu matrix composites by wet mixing and spark plasma sintering process)

  • 조승찬;조일국;이상복;이상관;최문희;박재홍;권한상;김양도
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.158-164
    • /
    • 2018
  • Multi-walled carbon nanotube (MWCNT)-copper (Cu) composites are successfully fabricated by a combination of a binder-free wet mixing and spark plasma sintering (SPS) process. The SPS is performed under various conditions to investigate optimized processing conditions for minimizing the structural defects of CNTs and densifying the MWCNT-Cu composites. The electrical conductivities of MWCNT-Cu composites are slightly increased for compositions containing up to 1 vol.% CNT and remain above the value for sintered Cu up to 2 vol.% CNT. Uniformly dispersed CNTs in the Cu matrix with clean interfaces between the treated MWCNT and Cu leading to effective electrical transfer from the treated MWCNT to the Cu is believed to be the origin of the improved electrical conductivity of the treated MWCNT-Cu composites. The results indicate the possibility of exploiting CNTs as a contributing reinforcement phase for improving the electrical conductivity and mechanical properties in the Cu matrix composites.

SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향 (Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites)

  • 심상한;정용근;박익민
    • 한국주조공학회지
    • /
    • 제10권1호
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF