• Title/Summary/Keyword: Cu immobilization

Search Result 40, Processing Time 0.022 seconds

Biosorption Characteristics of Pb and Cu by Ca-alginate Immobilized Algae Spirulina platensis (Ca-alginate에 고정한 Spirulina platensis의 납과 구리 흡착 특성)

  • Shin, Taek-Soo;Woo, Byoung-Sung;Lim, Byung-Seo;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.446-452
    • /
    • 2008
  • This study was conducted to research the biosorption characteristics using algae, Spirulina platensis, for the removal of Pb and Cu ions in wastewater. Both of free algal cell and immobilized algae by Ca-alginate were used as bioadsorbent, and experiment was proceed in batch reactor for Pb and Cu ions removal, respectively. In the biosorption of Pb and Cu ions by free Spirulina platensis cell, the adsorption equilibrium reached within 20 minute. The higher adsorbed amount of Pb and Cu was shown as increasing of initial concentration of Pb and Cu, and pH of solution, respectively, and the optimum pH was 4.5$\sim$5.0. Under the conditions of initial concentration of Pb or Cu are 200 mg/L, the maximum amounts of Pb and Cu adsorbed to the unit weight of Spirulina platensis were 86.43 and 57.02 mg/g, respectively, and these values were 1.94 and 1.48 times higher than those of activated carbon under same conditions, respectively. The biosorption kinetics of Pb and Cu ions by free Spirulina platensis cell fitted very well to the Freundlich and Langmuir isotherm. The maximum amount of Pb or Cu adsorbed to the unit mass of adsorbent by the Langmuir isotherm($q_{max}$) represented as 95.24 and 62.50 mg/g, respectively. The FT-IR results of free Spirulina platensis biomass showed that biomass has different functional groups and these functional groups are able to react with metal ions in aqueous solution. In the biosorption of Pb and Cu ions by Ca-alginate immobilized algae Spirulina platensis, the adsorption equilibrium reached within 40 min. and observed a little diffusion limitation differed from the free algal cell adsorption.

Anti-stress Effect by the Treatment of Vitamin C (Vitamin C 투여에 의한 항스트레스 효과)

  • 오찬호;최동성
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.424-430
    • /
    • 1993
  • The anti-stress effect by the treatment of vitamin C was investigated in this study. The treatment of ascorbic acid in the presence of $Cu^{2+}$ion induced strong time- and dose-dependent degradation of hitamine, and also the addition of histamine accelerated time-dependent decomposition of ascorbic acid in vitro. The treatment of ascorbic acid in $ODS^{od}/_{od}$rats, which cannot synthesize ascorbic acid, significantly decreased the urinary histamine. The protreatment of ascorbic acid, dexamethasone and promethazine inhibited the lethal effect induced by immobilization stress, but that of dimethylsulfoxide did not. The addition of ascorbic and to a culture of spleen cells of $ODS^{od}/_{od}$rats significantly increased the Con A-dependent T lymphocyte proliferation.

  • PDF

Reduction of eco-toxicity risk of heavy metals in the rotary drum composting of water hyacinth: Waste lime application and mechanisms

  • Singh, Jiwan;Kalamdhad, Ajay S.;Lee, Byeong-Kyu
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.212-222
    • /
    • 2015
  • Experiments were conducted on the immobilization of eight heavy metals (HMs) (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during 20-day rotary drum composting of water hyacinth. The Tessier sequential extraction procedure was used to investigate the fractionation of HMs. The eco-toxicity risk of HMs was assessed by risk assessment code (RAC). In the results, the bioavailability factor (BAF) for different HMs presented in the following order: Mn > Zn = Fe > Cu > Cr > Cd = Pb > Ni. The total concentration of Pb was higher than that of Zn, Cu, Mn, Cd and Cr; however, its BAF was the lowest among these HMs. These results confirmed that the eco-toxicity of HMs depends on bioavailable fractions rather than on the total concentration. The greatest reduction in bioavailability and eco-toxicity risk of HMs occurred in lime 1% and 2% as compared to control and lime 3%. The eco-toxicity risk of Fe, Ni, Pb, Cd and Cr was reduced from low risk to zero risk by rotary drum composting. These studies demonstrated the high efficiency of the rotary drum for degrading compost materials and for reducing the bioavailability and eco-toxicity risk of HMs during the composting process.

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils (중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Fabrication of PAN/FZ Beads Via Immobilization of Zeolite Prepared from Coal Fly Ash with Polyacrylonitrile and Their Sr and Cu Removal Characteristics (비산재로부터 합성한 제올라이트를 polyacrylonitrile로 고정화한 PAN/FZ 비드의 제조 및 Sr 및 Cu 이온 제거특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Jeong, Kap-Seop;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1613-1622
    • /
    • 2016
  • Zeolite (FZ), prepared from fly ash, was immobilized with polyacrylonitrile (PAN) to fabricate PAN/FZ beads. The prepared PAN/FZ beads were characterized by scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The optimum ratio to prepare PAN/FZ beads was 0.3 g of PAN to 0.3 g of FZ. The diameter of the prepared PAN/FZ beads was about 3 mm. Sr and Cu ion adsorption experiments were conducted with PAN/FZ beads. A pseudo-second-order model fit the kinetic data for Sr and Cu ion adsorption by PAN/FZ beads well. The equilibrium data fitted well with the Langmuir isotherm model, and the maximum adsorption capacities were 96.5 mg/g and 74.6 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$) and entropy (${\Delta}S^o$) were determined. The positive values of ${\Delta}H^o$ revealed the endothermic nature of the adsorption process and the negative values of ${\Delta}G^o$ were indicative of the spontaneity of the adsorption process.

Removal Characteristics of Sr and Cu Ions using PS-FZ Beads fabricated by Immobilization of Zeolite prepared from Coal Fly Ash from an Ulsan Industrial Complex with Polysulfone (울산산업공단에서 배출되는 coal fly ash로 합성한 제올라이트를 폴리슬폰으로 고정화하여 제조한 PS-FZ 비드의 Sr 및 Cu 제거 특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Jeong, Kap-Seop;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1623-1632
    • /
    • 2016
  • Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.

Immobilization Study of Inorganic Priority Pollutants in Soil with Amino Acids from Hydrolyzed Waste (재활용 아미노산을 이용한 토양 중의 무기 Priority Pollutants의 안정화 연구)

  • Bang, Jeong Hwan;Kim, Nam Jeong;Moon, Byoung Seok
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • The hydroxide precipitation method is appropriate to distinguish free metal ions with complexed metal ions with amino acids. Optimum pH conditions of hydroxide precipitation were investigated using mixed amino acids which have similar composition ratio with hydrolyzed amino acids. When applied to soil samples immobilities of Hg, Cr, and Cu ion with mixed and hydrolyzed amino acids were reasonable. But those of Cd and Zn were not sufficient.

  • PDF

Immobilization Characteristics of Copper Contaminated Soil Using Phosphate( I ) (인산염을 이용한 Cu 오염토양의 고정화 특성 연구 ( I ))

  • Lee, Eui-Sang;Sung, Ho-Young;Kim, Ji-Young;Lee, Ju-Goang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.291-293
    • /
    • 2007
  • 인산염을 이용한 구리 고정화 실험의 토양적용가능성을 평가하고자 액상반응실험과 고정화물의 재용출 실험을 수행하였다. 액상반응실험 결과 인산염과 알칼리제 1mole을 넣은 반응에서 99.9% 의 구리제거효율을 보였고 구리의 재용출 농도는 0.64mg/L로 초기농도인 1000mg/L보다 현저히 낮은 값을 나타내었다.

  • PDF

ALC(Autoclaved Light-weight Concrete)를 이용한 생물학적 반응벽체에 관한 연구

  • Park Geun-Min;Lee Jae-Yeong;O Byeong-Taek;Choi Sang-Il
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.402-406
    • /
    • 2006
  • The physical and chemical characteristics of ALC were analyzed and showed 2.2 of specific gravity and 9.05 of pH. The results of leaching tests with standard method for soil and waste indicated heavy metals(Cu, Cd, Pb, $Cr^{6+}$) were under maximum concentration level. The anaerobic digestion sludge was attached in the surface of ALC within 90 hours. As the results of batch test, pH of the ALC and Bio-ALC were decreased from initial pH of ALC to 8.7 and 7.8 respectively Also, the concentration of heavy metals was rapidly eliminated in the solution with the batch test. The result of column experiment indicates that the removal efficiency of ALC was showed 66% of T-P, 60% of T-N, and 67% of CODcr. Also, removal efficiency of Bio-ALC was slightly higher than that of ALC in T-N (64%) and CODcr (74%).

  • PDF

Characteristics of Heavy Metal Removal from Aqueous Solutions using Leather Industry by-products (피혁산업 부산물에 의한 용존 중금속 제거 특성)

  • Kim, Keun-Han;Lee, Nam-Hee;Paik, In-Kyu;Park, Jae-Hyung;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.417-426
    • /
    • 2010
  • In this study, ten different bio-adsorbents were prepared by immobilization of vegetable tannins such as mimosa(Catechol Tannin) and chestnut(Pyrogallol Tannin) on the collagen matrix which was derived from during leather manufacturing processing. Removal efficiency of Cu(II), Cd(II), Zn(II), Pb(II), Cr(III) by each bio-adsorbent in synthetic wastewater was evaluated by a laboratory-scale batch reactor at different reaction conditions. When mimosa was used as a vegetable tannin, the penetration efficiency of mimosa into the inner bundle of fiber depended on the dose of the naphthalene condensated penetrant; 3% ${\geq}$ 1.5% > 0%. For all bio-adsorbents, removal of heavy metal ions was not observed below pH 3.0 but was rapidly increased between pH 3.0 and 6.0, showing near complete removal of all heavy metal ions except Zn(II) above pH 6.0. Removal of Cr(III) was quite similar for all bio-adsorbents while removal of Cu(II), Zn(II) and Pb(II) was higher by bio-adsorbents immobilized with chestnut than that by mimosa. Adsorption of Pb(II) and Cu(II) by S10 bio-adsorbent was little affected by the presence of monovalent and divalent electrolytes as well as variation of 1000 times ionic concentration with $NaNO_3$.