Journal of Environmental Science International 25(12); 1613~1622; December 2016

ORIGINAL ARTICLE

비산재로부터 합성한 제올라이트를 polyacrylonitrile로 고정화한 PAN/FZ 비드의 제조 및 Sr 및 Cu 이온 제거특성

감상 π^{1} · 이창한²⁾ · 정갑섭³⁾ · 이민 π^*

부경대학교 화학공학과, ¹⁾제주대학교 환경공학과, ²⁾부산가톨릭대학교 환경행정학과, ³⁾동명대학교 식품영양학과

Fabrication of PAN/FZ Beads Via Immobilization of Zeolite Prepared from Coal Fly Ash with Polyacrylonitrile and Their Sr and Cu Removal Characteristics

Sang-Kyu Kam¹⁾, Chang-Han Lee²⁾, Kap-Seop Jeong³⁾, Min-Gyu Lee^{*}

Department of Chemical Engineering, Pukyong National University, Busan 48547, Korea

¹⁾Department of Environmental Engineering, Jeju National University, Jeju 63243, Korea

²⁾Department of Environmental Adminstration, Catholic University of Pusan, Busan 46252, Korea

³⁾Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea

Abstract

Zeolite (FZ), prepared from fly ash, was immobilized with polyacrylonitrile (PAN) to fabricate PAN/FZ beads. The prepared PAN/FZ beads were characterized by scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The optimum ratio to prepare PAN/FZ beads was 0.3 g of PAN to 0.3 g of FZ. The diameter of the prepared PAN/FZ beads was about 3 mm. Sr and Cu ion adsorption experiments were conducted with PAN/FZ beads. A pseudo-second-order model fit the kinetic data for Sr and Cu ion adsorption by PAN/FZ beads well. The equilibrium data fitted well with the Langmuir isotherm model, and the maximum adsorption capacities were 96.5 mg/g and 74.6 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were determined. The positive values of ΔH° revealed the endothermic nature of the adsorption process and the negative values of ΔG° were indicative of the spontaneity of the adsorption process.

Key words : Adsorption, Zeolite, Strontium, Copper, Polyacrylonitrile

1. 서 론

과학 기술의 발전과 산업 활동의 증가, 에너지 문제 등으로 인해 전 세계적으로 경제적이고 안정성 있는 원자력 발전소를 건설하여 사용하고 있으나, 운영 중 에 발생하는 많은 양의 액체 폐기물이 원자력 산업의 보급에 주요 장애 요인으로 지적되어 왔다. 특히 2011 년 3월, 후쿠시마 다이치 원전에서 지진과 이로 인해 발생한 쓰나미로 핵 누출 사고로 인해 전 세계적으로 액체 폐기물의 처리 문제가 매우 주요한 현안으로

Received 7 September, 2016; Revised 7 November, 2016; Accepted 17 November, 2016

^{*}Corresponding author : Min-Gyu Lee, Department of Chemical Engineering, Pukyong National University, Busan 48547, Korea Phone: +82-51-629-6435 E-mail: mglee@pknu.ac.kr

The Korean Environmental Sciences Society. All rights reserved. © This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

부각되고 있다. Sr은 반감기가 길며 핵분열 생성물 비 율이 높고 생물체에 쉽게 흡수되어 다양한 암 및 유전 자 돌연변이를 유발한다고 알려져 있어 이를 처리하 기 위해 다양한 처리 방법을 적용하고 있다.

제올라이트는 선택적인 이온 교환 특성과 높은 흡 착량을 가져 중금속 함유 폐수를 처리하는데 있어 Sr 과 같은 방사능 물질을 제거하기 위한 방법으로 주목 을 받고 있다(Atun and Bodur, 2002). 본 연구자들은 선행연구(Lee et al., 2015c)에서 상업용 제올라이트 A 를 이용한 경우에 Sr 이온의 흡착량이 156 mg/g으로 높은 흡착량을 보이는 것을 확인하였다. 최근에는 화 력발전소에서 발생하는 폐기물인 fly ash(비산재)로 제올라이트를 합성하여 중금속 이온을 제거하는 연구 가 많이 진행되고 있다. Kumar et al.(2004)은 비산재 로 합성한 zeolite A를 이용하여 Pb를 제거하는 연구 를 하였고, Shaila et al.(2014)은 비산재로 제올라이트 를 합성하여 Cu²⁺, Ni²⁺, Mn²⁺ 등의 여러 가지 중금속 이온들을 제거하는 연구를 하였다. Rahman et al.(2010)은 제올라이트 NaA-X를 합성하여 사용한 경우에 Sr 이온의 흡착량이 312.5 mg/g이었다고 하였 으며, 본 연구자들은 선행연구에서 비산재로 합성한 제올라이트를 이용하여 수중의 Cu 및 Zn 이온(Lee, 2011), Co 이온(Lee and Suh, 2009), Sr 및 Cs 이온 (Lee et al., 2014)의 흡착제거에 관한 연구를 하였으 며, 비산재로 합성한 제올라이트는 이들 이온들에 대 해 높은 제거능을 보였다.

그러나, 제올라이트와 같은 흡착제는 분말 형태로 사용되기 때문에 사용 후 흡착제의 분리 및 회수가 어 려운 단점(Yang et al., 2014)이 있어 최근에는 제올라 이트를 polysulfone(Lee et al., 2015b), PVA(Lee and Lee, 2015), SAN(Lee et al., 2015a), 키토산(Wan Ngah et al., 2013) 등과 같은 다양한 고분자 물질에 고 정화하여 사용하는 연구가 수행되고 있으며, 제올라 이트를 고분자 물질에 고정화한 경우에도 수중의 이 온 제거에 있어서 효과적이라고 하였다. 또한 Faghihian et al.(2013)은 수중의 Sr 이온을 제거하기 위하여 polyacrylonitrile(PAN)에 제올라이트 A를 고 정화하여 Sr 이온을 제거하는 연구를 수행하였다.

따라서 본 연구에서는 비산재로 합성한 제올라이 트 A를 고분자 물질인 PAN에 고정화한 PAN/FZ 비 드를 합성하고, SEM, XRD, FTIR 및 TGA 분석을 통 해 PAN/FZ 비드의 특성을 조사하였다. 또한, PAN/FZ 비드에 의한 Sr 이온의 흡착실험을 회분식으 로 수행하고 속도식과 등온식을 해석하였으며, 용액 의 pH와 온도에 변화에 따른 흡착특성을 고찰하였다.

2. 재료 및 방법

2.1. 재료

Polyacrylonitrile(PAN)은 Sigma-Aldrich에서 구입 하여 사용하였으며, 용매는 Dimethyl sulfoxide (DMSO, Samchun, EP)를 사용하였다. Sr 이온 용액은 Sr(NO₃)₂(Samchun, EP)를 초순수(Milli-Q Millipore 18.2 Mcm⁻¹ conductivity)에 녹여 1,000 mg/L의 stock solution을 제조하여 사용하였다. 용액의 pH는 0.1 M HCl(Samchun, EP)과 0.1 M NaOH(Samchun, EP)를 사용하여 조절하였다.

2.2. 흡착제 제조

본 연구에 사용한 흡착제는 선행연구(Lee et al., 2014)에서와 같이 석탄보일러(울산지역에 소재하는 H사)의 전기집진기에서 발생하는 비산재로 합성한 제올라이트(FZ)를 이용하였다. 비산재에 Al₂O₃를 첨 가하여 Si/Al의 몰비를 1 : 1.5로 조절하고, 여기에 Na₂CO₃를 1 : 1.2로 혼합하여 800℃에서 1시간동안 용융시킨 후 수용액에서 교반하면서 숙성 및 결정화 과정을 거쳐 제올라이트를 제조하였으며, 탈이온수로 수차례 세척하고 105℃에서 2시간 건조한 후 실험에 사용하였다.

PAN/FZ 비드의 제조는 DMSO 5.0 mL에 PAN 0.3 g을 용해시킨 후에 비산재로 합성한 Na-A 제올라이 트 분말 0.3 g을 넣고 균일한 슬러리가 되도록 충분히 혼합하였다. 혼합된 슬러리를 직경 1 mm인 주사기를 이용하여 증류수에 떨어뜨려 PAN/FZ 비드를 합성하 였으며, 이를 증류수로 수차례 세척한 후 실험에 사용 하였다. 제조한 다음에 증류수로 수차례 세척하여 실 험에 사용하였다.

2.3. 실험 방법

실험은 회분식으로 수행하였으며, 500 mL 삼각플 라스크에 일정 농도의 Sr 이온 용액 200 mL와 PAN/FZ 비드 2 g을 넣은 후 수평진탕기(Johnsam, JS-FS-2500) 를 사용하여 180 rpm으로 교반하면서 일정시간 간격 마다 1 mL의 시료를 채취하였다. Sr 이온의 농도는 원 자흡광광도계(Shinmadzu. AA-7,000)을 사용하였다. 용액의 pH는 0.1 M HCl과 0.1 M NaOH를 사용하여 조절하였으며, pH meter(Istek, AJ-7,724)를 이용하여 측정하였다.

합성한 제올라이트의 형태는 전자주사현미경(SEM : HITACHI, S-2700)을 사용하여 관찰하였으며, Fourier transform infrared spectrometer(FTIR. Bruker Vertex 70) 및 Thermo gravimetric analysis(TGA, Perkin Elmer, TGA 7)로 PAN/FZ 비드의 특성을 분 석하였다.

PAN/FZ 비드에 의해 흡착된 Sr 이온의 흡착량 q_t(mg/g)는 다음 식으로 계산하였다.

$$q_t = \frac{\left(C_0 - C_t\right)V}{m} \tag{1}$$

여기서 q_t는 시간 t에서 PAN/FZ 비드에 의해 흡착 된 Sr 이온의 흡착량(mg/g), C₀와 C_t는 각각 초기와 t 시간에서 용액 중의 Sr 이온의 농도(mg/L), V는 용액 의 부피(L), m은 사용한 비드의 양(g)이다.

3. 실험 결과

3.1. PAN/FZ 흡착제의 특성

Fig. 1은 FZ, PAN 및 PAN/FZ 비드의 FT-IR 분석 결과를 나타낸 것이다. Fig. 1(a)에서 보듯이 FZ는 552.77 cm⁻¹에서 Si-O-Na⁺ 피크, 996.28 cm⁻¹에서 Si-O-Al 피크, 1,651.72 cm⁻¹에서 H-O-H 피크가 관찰 되었다(Nibou et al., 2010). 또한, Fig. 1(b)에서 보듯 이 고분자 PAN는 1,454.37 cm⁻¹와 2,939.45 cm⁻¹에서 C-H 피크, 2,243.47 cm⁻¹에서 C≡ N 피크가 관찰되었 다(Faghihian et al., 2013). 그리고 Fig. 1(c)에 나타낸 PAN/FZ 비드의 경우에는 Fig. 1(b)의 PAN에서 관찰 되었던 1,455.39 cm⁻¹와 2,941.11 cm⁻¹에서 C-H 피크, 2,243.84 cm⁻¹에서 C≡ N 피크 이외에도 Fig. 1(a)의 FZ에 존재하였던 552.42 cm⁻¹에서의 Si-O-Na⁺, 1,007.80 cm⁻¹에서의 Si-O-Al 피크 및 1,646.70 cm⁻¹ 에서의 H-O-H 피크가 관찰되어 고분자 PAN에 FZ가 성공적으로 고정화되었음을 확인할 수 있었다.

Fig. 1. FT-IR spectra of (a) FZ, (b) PAN, and (c) PAN/FZ beads.

Fig. 2는 FZ, PAN 및 PAN/FZ 비드의 TGA 결과를 나타낸 것이다. Fig. 2에서 보듯이 FZ의 경우에는 100~200℃의 온도 범위에서 수분에 의한 약 15%의 무게 감소를 보였고, 고분자 PAN의 경우에는 310℃ 에서 약 20%로 무게가 감소하였다(Ozcan et al., 2010).

Fig. 2. Thermogram of FZ, PAN and PAN/FZ beads.

Fig. 3. (a) SEM image of the cross sectional area of PAN/FZ beads (X 60) with different PAN and FZ content: (b) PAN 0.3 g and FZ 0.3 g, (c) PAN 0.3 g and FZ 0.5 g, and (d) PAN 0.4 g and FZ 0.3 g (X 20,000).

또한, 본 연구에서 합성한 PAN/FZ 비드의 경우에는 100~200℃의 범위에서 FZ에 함유된 수분에 의한 무 게 감소와 310℃에서 PAN에 의한 무게 감소가 관찰 됨으로써 PAN/FZ 비드 내에 FZ이 고정화되어 있는 것을 확인하였다.

Fig. 3은 본 연구에서 합성한 PAN/FZ 비드의 SEM 사진을 나타낸 것이다. Fig. 3(a)는 본 연구에서 합성 한 PAN/FZ 비드의 외형을 나타낸 것으로 본 연구에 서 합성한 PAN-SZ 비드는 크기가 약 3 mm인 구형이 었다.

Fig. 3(b)~Fig. 3(d)는 고분자 PAN과 FZ의 함량을 달리하여 합성한 PAN/FZ 비드의 절단면을 나타낸 것 으로 비드의 내부에는 다공성의 기공들이 존재하며, 고분자 표면에 FZ가 부착되어 고정화되어 있었음을 확인할 수 있었다. Fig. 3(b)와 Fig. 3(c)는 PAN 1.25 g 에서 FZ의 함량을 각각 0.5 g과 2 g으로 달리하여 제 조한 PAN/FZ 비드의 SEM 사진으로써 FZ의 함량이 0.5 g에서 2 g으로 증가함에 따라 비드의 내부에는 더 많은 양의 제올라이트가 관찰되었으며, FZ가 많아짐 에 따라 PAN/FZ 비드의 기공의 크기가 다소 감소하 였다. 또한, Fig. 3(b)와 Fig. 3(d)는 FZ 2 g으로 하고 고분자 PAN의 함량을 각각 1.25 g과 1.75 g으로 달리 하여 제조한 PAN/FZ 비드의 SEM 사진으로 고분자 PAN의 함량이 1.75 g으로 증가함에 기공들이 많이 감소하였으며, 더 많은 PAN이 제올라이트 입자를 둘 러싸게 되어 흡착을 방해할 것으로 추정된다.

Fig. 4는 고분자 PAN과 FZ의 함량에 따른 Sr 이온 의 흡착량 변화를 나타낸 것이다. Fig. 4에서 보듯이

FZ의 함량이 0.3 g인 경우에 PAN의 함량이 0.3 g에서 0.5 g으로 증가할수록 Sr 이온의 흡착량은 43.2 mg/g 에서 33.4 mg/g으로 감소하였다. 이러한 결과는 PAN 의 함량이 증가할수록 Fig. 3(d)에서 보듯이 비드의 내 부가 PAN로 덮여있어 물의 유통이 원활하지 않기 때 문으로 사료된다. 또한 PAN의 함량이 0.3 g인 경우에 FZ의 함량을 0.1 g에서 0.5 g으로 증가시키면 이온의 흡착량은 19.5 mg/g에서 48.1 mg/g으로 증가하였지 만 FZ의 함량이 0.3 g 이상에서는 흡착량의 변화가 크 지 않았다. 이는 PAN-SZ 비드 내에 FZ 함량이 증가 할수록 흡착량이 증가하지만 단위 부피 내에 FZ가 일 정량 이상으로 많아지면 흡착제 간의 거리가 가까 위져 활성점이 공유되거나 상호 방해 작용이 생기기

Fig. 4. Effect of PAN and FZ contents for the adsorption capacity of Sr ions by PAN/FZ beads (PAN/ FZ beads = 2.0 g/0.2 L, concentration = 100 mg/L, temperature = 293 K).

Fig. 5. Effect of contact time for the adsorption capacities of Sr ions by PAN/FZ (PAN/FZ beads = 2 g/0.2 L, pH 6, temperature = 293 K).

때문으로 사료된다. 따라서 본 연구에서는 PAN 0.3 g, FZ 0.3 g의 조건에서 합성한 PAN-SZ 비드를 이용하 여 이후 실험을 진행하였다.

3.2. 시간에 따른 흡착량 변화

Fig. 5는 초기농도를 100~400 mg/L으로 달리한 경 우에 PAN/FZ 복합체에 의한 Sr이온의 시간에 따른 흡착량 변화를 나타낸 것이다. Fig. 5에서 보는 바와 같이 Sr 및 Cu 이온은 대체로 24 hr 까지 빠르게 흡착 이 이루어지다가 차츰 완만해져서 약 72 hr에서 평형 에 도달하였다. 이는 일반적으로 흡착 초기 단계에서 는 PAN/FZ 복합체에 비어 있는 활성점이 많아 쉽게 흡착이 일어나지만, 시간이 경과할수록 액체상과 고 체상 사이의 물질전달구동력이 감소하게 되고, 금속 이온들이 기공 내로 깊게 확산되어 저항은 커지게 되 기 때문에 점점 흡착 속도가 늦어지는 것으로 예상된 다(Lee et al., 2012). 한편 금속이온의 초기농도가 100~400 mg/L으로 증가함에 따라 흡착량도 Sr 이온 의 경우 41.6~71.7 mg/g이며, Cu 이온의 경우 40.4~74.6 mg/g으로 증가하였는데, 이는 농도가 증가 함에 따라 흡착 구동력인 농도차가 커지기 때문으로 사료된다.

3.3. 흡착속도모델

유사 1차 속도 모델식은 흡착속도를 다음과 같이 흡착용량에 대해 유사 1차식으로 나타낸 것으로 다음 과 같이 표현된다.

$$\frac{dq_t}{dt} = k_1(q_e - q_t) \tag{1}$$

여기서 k₁은 유사 1차 속도식의 속도상수(1/hr)이 며, q_e는 평형 흡착량(mg/g)을 나타낸다. 초기조건 t=0 일 때 q_t=0, q_t=q_t 일 때 t=t을 적용하면 다음과 같이 표 현된다.

$$\log(q_e - q_t) = \log(q_e) - \frac{k_1 t}{2.303}$$
(2)

유사 2차 속도식은 다음의 형태로 표현된다.

$$\frac{dq_t}{dt} = k_2 (q_e - q_t)^2 \tag{3}$$

여기서 k₂는 유사 2차 속도식의 속도상수(g/mg • hr)이며, 여기에 초기조건을 적용하여 정리하면 아래 와 같이 정리된다.

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 (4)

Fig. 6과 7은 Fig. 5의 자료를 식 (2)와 (4)에 적용한

Fig. 6. Plots of the pseudo-first-order kinetic model for (a) Sr ion and (b) Cu ion.

결과를 나타낸 것으로 이로부터 구한 파라미터 값들 을 Table 1에 정리하였다. Table 1에서 보듯이 PAN/FZ 비드에 의한 Sr 및 Cu 이온의 흡착 실험결과 를 유사 1차 속도식에 적용한 경우에 결정계수(r²)는 각각 0.8519~0.9841 및 0.9418~0.9964이고, 유사 2차 속도식에 적용한 경우에는 0.9986~0.9998 및 0.992 2~0.9984로 유사 2차 속도식에 잘 만족하였다. Faghihian et al.(2013)은 제올라이트 A를 PAN에 고 정화하여 Sr 이온을 제거하는 경우에도 유사 2차 속도 식에 적합하였으며, 본 연구자들이 비산재로 합성한 제올라이트를 이용하여 수중의 Sr 및 Cs 이온의 제거 하는 연구(Lee et al., 2014)와 제올라이트 A를 고분자 polysulfone (PS)에 고정화한 경우(Lee et al., 2015b) 에서도 유사 2차 속도식에 적합하여 본 연구의 결과와 유사하였다.

3.4. 온도 변화에 따른 흡착량 변화

흡착 등온실험 결과에서 얻어진 실험 자료를 Freundlich 흡착 등온식과 Langmuir 흡착 등온식에 적용하여 검토하였다.

Langmuir 흡착 등온식은 아래와 같이 정의된다 (Langmuir, 1918).

$$q_e = \frac{q_m k_L C_e}{1 + K_L C_e} \tag{5}$$

여기서 KL는 Langmuir 상수(L/mg) 그리고 qm은

Fig. 7. Plots of the pseudo-second-order kinetic model for (a) Sr ion and (b) Cu ion.

Ion	C ₀ (mg/L)	q _{e,exp} (mg/g)	Pseudo-first-order			Ps	seudo-second-order	
Ion			q _e (mg/g)	k ₁ (1/hr)	r^2	q _e (mg/g)	$k_2(g/mg\cdot hr)$	r ²
	100	41.6	30.9	0.1054	0.9841	43.5	0.0076	0.9993
	150	50.7	39.3	0.1028	0.9839	54.1	0.0045	0.9992
Sr	200	56.2	38.9	0.0994	0.9780	58.5	0.0062	0.9997
	250	62.1	36.5	0.0781	0.8933	64.1	0.0062	0.9998
	300	67.8	38.9	0.0708	0.8519	70.4	0.0047	0.9986
	400	71.8	36.6	0.0744	0.9285	73.0	0.0074	0.9989
	100	40.4	35.9	0.1168	0.9931	43.3	0.0054	0.9984
	150	57.2	50.8	0.0710	0.9964	62.5	0.0023	0.9922
Cu	200	64.5	51.5	0.0501	0.9418	69.4	0.0020	0.9928
	250	65.6	54.3	0.0613	0.9684	70.9	0.0021	0.9927
	300	68.5	58.5	0.0731	0.9842	74.6	0.0021	0.9928
	400	74.6	71.8	0.1096	0.9934	80.0	0.0025	0.9961

Table 1. Kinetic data calculated for the adsorption of Sr ions

최대 흡착량(mg/g)이다.

Fruendlich 등온식은 다음과 같다(Freundlich, 1906).

$$q_e = K_F C_e^{1/n} \tag{6}$$

여기서 K_F는 Freundlich 상수(L/mg)이며, 1/n은 흡 착강도를 나타내는 상수이다.

Fig. 8은 용액의 온도를 293 K, 308 K 및 323 K로 달리한 경우에 PAN/FZ 비드에 의한 Sr 이온의 흡착 등온 실험결과를 나타낸 것이며, Langmuir 등온식에 적용하여 계산된 매개변수 값들은 Table 2에 나타내 었다. Table 2에서 보듯이 Sr 이온의 경우 Langmuir 등온식에 적용한 경우에 r² 값은 0.9945~0.9957, Freundlich 등온식의 r² 값은 0.9852~0.9939, Cu 이온 의 경우 Langmuir 등온식에 적용한 경우에 r² 값은 0.9945~0.9957, Freundlich 등온식의 r² 값은 0.9852 ~0.9939으로 Langmuir 등온식에 잘 만족하였다. Faghihian et al.(2013)은 제올라이트 A를 PAN에 고 정화하여 Sr 이온을 제거하는 경우에도 Langmuir 등 온식에 적합하였으며, 본 연구자들이 비산재로 합성한

Fig. 8. Isotherm plots for the sorption of (a) Sr ion and (b) Cu ion onto PAN/FZ beads at different temperatures.

			Langmuir			Freundlich	
Ion	Temperature	q _m (mg/g)	k _L (L/mg)	r^2	k _F (L/mg)	1/n	r^2
	293 K	82.6	0.0165	0.9957	19.7568	0.3006	0.9939
Sr	308 K	84.7	0.0179	0.9955	22.9588	0.2803	0.9873
	323 K	92.6	0.0171	0.9945	19.7667	0.3416	0.9852
	293 K	74.6	0.1811	0.9968	41.1696	0.1117	0.9591
Cu	308 K	80.6	0.2029	0.9982	49.8840	0.0856	0.9958
	323 K	82.0	0.3144	0.9991	51.9925	0.0878	0.9239

Table 2. Isotherm parameters for the sorption of Sr and Cu ion onto PAN/FZ beads

제올라이트를 이용하여 수중의 Sr 이온의 제거하는 연구(Lee et al., 2014)와 제올라이트 A를 고분자 PS 에 고정화한 경우(Lee et al., 2015b)에도 Langmuir 등 온식에 적합하였다. 또한 Table 4에서 보듯이 온도가 293 K, 308 K 및 323 K로 증가할수록 Sr 이온의 최대 흡착량은 82.6 mg/g~92.6 mg/g으로, Cu 이온의 최대 흡착량은 74.6 mg/g~82.0 mg/g으로 증가하였다. 이 는 용액의 온도가 증가할수록 이온들의 운동이 활발 해져서 물질 전달이 활발히 이루어지기 때문으로 생 각된다(Yadav et al., 2013).

Table 3은 제올라이트를 고분자로 고정화한 흡착 제로 수중의 Sr 이온을 제거하는 연구 결과를 비교하 여 나타낸 것이다. Table 3에서 보듯이 본 연구에서 합 성한 PAN/FZ에 의한 Sr 및 Cu 이온의 흡착량은 82.6 및 74.6 mg/g으로 Faghihian et al.(2013)이 상업용 제 올라이트 A를 Polyacrylonitrile로 고정화한 경우의 Sr 흡착량 98.13 mg/g 보다는 흡착량이 다소 작으나, chitosan(Wan Ngah et al., 2013), polysulfon(Lee et al., 2015b), polyvinyl alcohol(Lee and Lee, 2015) 및 styrene acrylonitrile copolymer(Lee et al., 2015a)로 고정화한 경우 보다는 우수한 흡착량을 보였다.

3.5. 열역학적 해석

일반적으로 열역학적 파라미터인 엔탈피(ΔH°)와 엔트로피(ΔS°)는 다음과 같은 관계를 갖는다.

$$\ln k_L = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT}$$
(7)

여기서 T는 절대 온도(K), R은 이상기체 상수 (J/mol·K)이다.

그리고 Gibbs 자유에너지(ΔG°)는 다음과 같다.

Adsorbent	$q_e(mg/g)$			Deferences	
Polymer	zeolite	Sr	Cs	Cu	Kelefelices
-	zeolite A from fly ash	156.8	94.4		Lee et al., 2014
-	zeolite A from fly ash			99.75	Lee, 2011
Polysulfone	zeolite A	65	76.4		Lee et al., 2015b
	zeolite A from fly ash	46.73		62.5	Kam et al., 2016
Polyvinylalcohol	zeolite A	52.08	58.14		Lee and Lee, 2015
Styrene acrylonitrile copolymer	zeolite A	66.97	81.97		Lee et al., 2015a
Chitosan	zeolite A			25.61-51.32	Wan Ngah et al., 2013
Polyacrylonitrile	zeolite A	98.13			Faghihian et al., 2013
Polyacrylonitrile	zeolite A from fly ash	82.6		74.6	This study

Table 3. Comparison of adsorption capacity for various adsorbent

	$\Delta U^0 (l_T I/m ol)$	$\Delta S^{\circ}(J/mol \cdot K)$	ΔG° (kJ/mol)			
	ΔH (kJ/III01)		293 K	308 K	323 K	
Sr	3.99	53.46	-11.68	-12.48	-13.28	
Cu	14.34	68.76	-5.82	-6.85	-7.89	

(8)

Table 4. Thermodynamic parameters for the adsorption of Sr and Cu ions by PAN/FZ beads

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

각 온도에서 구한 Langmuir 상수를 식 (7)에 적용 하여 lnkL과 1/T를 도시하고 식 (8)에서 구한 ΔG°, ΔH° 및 ΔS°를 Table 4에 나타내었다. Table 4에서 보듯이 ΔH° 값은 0.75 kJ/mol, ΔS° 값은 5.81 J/mol·K, ΔG°는 -0.96 kJ/mol, -1.04 kJ/mol, -1.13 kJ/mol이었다. 따 라서 ΔH°가 양의 값을 가지므로 흡착 과정이 흡열반 응이고, ΔG°가 음을 값을 가지므로 흡착제에 의한 금속 이온의 흡착이 자발적인 반응임을 나타낸다. Faghihian et al.(2013)이 제올라이트 A를 PAN에 고 정화하여 Sr 이온을 제거하는 경우와 본 연구자들이 비산재로 합성한 제올라이트를 이용하여 수중의 Sr 이온의 제거하는 연구(Lee et al., 2014), 제올라이트 A를 고분자 PS에 고정화한 경우(Lee et al., 2015b)에 서도 본 연구의 결과와 유사하였다.

4. 결 론

본 연구에서는 산업폐기물인 비산재로 합성한 Na-A 제올라이트(FZ)를 고분자 PAN에 고정화한 PAN/FZ 비드를 제조하였고, FT-IR과 TGA 분석을 통해 PAN/FZ 비드 내에 제올라이트가 고정화되었음 을 확인하였다. 또한, SEM 분석결과에서 PAN/FZ 비 드는 직경이 약 3 mm인 구형이며, 비드의 내부에는 다공성 구조를 가지는 것을 알 수 있었다. PAN/FZ 비 드를 합성하는 경우에 고분자 PAN의 함량은 0.3 g, FZ의 함량은 0.3 g에서 Sr 이온을 제거하기에 가장 적 합한 조건이었다. PAN/FZ 비드에 의한 Sr 이온의 흡 착 특성을 알아보기 위하여 회분식 실험을 수행하였 으며, 시간에 따른 Sr 이온의 농도 변화 결과를 유사 1 차 속도식과 2차 속도식에 적용한 결과 유사 2차 속 도식에 잘 만족하였다. 등온 흡착 실험결과는 Langmuir 등온식에 적합하였으며, Langmuir 등온식 으로 계산된 Sr 이온 및 Cu 이온의 최대 흡착량은 96.5 mg/g 및 74.6 mg/g이었다. Sr 이온의 ΔH° 값은 3.99 kJ/mol, ΔG°는 -11.68~-13.28 kJ/mol이고, Cu 이온의 ΔH° 값은 14.34 kJ/mol, ΔG°는 -5.82~-7.89 kJ/mol으로 PAN/FZ 비드에 흡착하는 과정이 흡열반 응이고, 자발적으로 일어나는 반응임을 알 수 있었다.

REFERENCES

- Atun, G., Bodur, N., 2002, Retention of Cs on zeolite, bentonite and their mixtures, J. Radioanal. Nucl. Chem., 253, 275-279.
- Faghihian, H., Iravani, M., Moayed, M., Ghannadi -Maragheh, M., 2013, Preparation of a novel PAN-zeolite nanocomposite for removal of Cs^+ and Sr^{2+} from aqueous solutions : Kinetic, equilibrium and thermodynamic studies, Chem. Eng. J., 222(15), 41-48.
- Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
- Kam, S. K., Lee, C. H., Lee, M. G., 2016, Preparation of PS-FZ beads by immobilizing zeolite prepared from coal flyash in Ulsan industrial complex with polysulfone and its removal characteristics of Sr and Cu ions, J. Environ. Sci. Int., Submitted.
- Kumar, P., Rayalu, S., Dhopte, S., 2004, Fly ash based zeolite-A: A Suitable sorbent for lead removal, Indian J. Chem. Technol., 11, 227-233.
- Langmuir, I., 1918, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403.
- Lee, C. H., 2011, Adsorption kinetics of copper and zinc ion with Na-A zeolite synthesized by coal fly ash, J. Environ. Sci. Int., 20(12), 1607-1615.
- Lee, C. H., Kam, S. K., Lee, M. G., 2015a, Removal of

Sr and Cs ions by SAN-Zeolite beads prepared by immobilization of zeolite with SAN, J. Environ. Sci. Int., 24(11), 1331-1341.

- Lee, C. H., Lee, M. G., 2015, Removal of Cs and Sr ions by absorbent immobilized zeolite with PVA, J. Korean Soc. Environ. Eng., 37(8), 450-457.
- Lee, C. H., Park, J. M., Kam, S. K., Lee, M. G., 2015b, Preparation of novel PS-zeolite beads immobilized zeolite with polysulfone for radioactive materials, J. Korean Soc. Environ. Eng., 37(3), 145-151.
- Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption characteristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23(12), 1987-1998.
- Lee, C. H., Park, J. M., Lee, M. G., 2015c, Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A : Adsorption isotherm and kinetics, J. Environ. Sci. Int., 24(2), 1987-1998.
- Lee, C. H., Suh, J. H., 2009, Adsorption characteristics of cobalt Ion with zeolite synthesized by coal fly ash, J. Korean Soc. Environ. Eng., 31(11), 941-946.
- Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon, J. Environ. Sci. Int., 21, 623-631.
- Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., Trari, M., 2010, Adsorption of Zn²⁺ ions onto NaA and NaX zeolites : Kinetic, equilibrium and thermo -dynamic studies, J. Hazard. Mater., 173(1-3),

637-646.

- Ozcan, S., Tor, A., Aydin, M. E., 2010, Removal of Cr(VI) from aqueous solution by polysulfone microcapsules containing Cyanex 923 as extraction reagent, Desalination, 259, 179-186.
- Rahman, R. O. A., Ibrahim, H. A., Hanafy, M., Monem, N. M. A., 2010, Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility, Chem. Eng. J., 157(1), 100-112.
- Shaila, K., Deepa, P., Pralhad, P., 2014, Synthesis of zeolite using fly ash and its application in removal of Cu²⁺, Ni²⁺, Mn²⁺ from paper industry effluent, Res. J. Chem. Sci., 4(3), 5-9.
- Wan Ngah, W. S., Teong, L. C., Toh, R. H., Hanafiah, M. A. K. M., 2013, Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites, Chem. Eng. J., 223, 231-238.
- Yadav, K. K., Singh, D. K., Anitha, M., Varshney, L., Singh, H., 2013, Studies on separation of rare earths from aqueous media by polyethersulfone beads containing D2EHPA as extractant, Sep. Purif. Technol., 118, 350-358.
- Yang, K., Zhang, X., Chao, C., Zhang, B., Liu, J., 2014, In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution, Carbohyd. Polym., 107(4), 103-109.