• Title/Summary/Keyword: Cu composites

Search Result 225, Processing Time 0.036 seconds

Effect of Post Deformation on the Structure and Properties of Sintered Al-Cu-SiC Composites

  • Chung, Hyung-Sik;Heo, Ryun-Min;Kim, Moon-Tae;Ahn, Jae-Hwan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1301-1302
    • /
    • 2006
  • Sintered composites of Al-8wt%Cu-10vol%SiCp were deformed by repressing or equal channel angular pressing(ECAP) at room temperature, $500^{\circ}C$ and $600^{\circ}C$. Repressing produced more densification than ECAP but resulted in much lower transverse rupture strengths. In both cases, deformation at room temperature and $500^{\circ}C$, resulted in much lower strengths than deformation at $600^{\circ}C$, and also caused the fracturing of some SiC particles. The higher bend strengths and less SiC fracturing at $600^{\circ}C$ are attributable to the presence of an Al-Cu liquid phase during deformation. The employment of copper coated SiC instead of bare SiC particles for preparing the composites was found not improving the properties.

  • PDF

The Effect of Cold Working and Heat Treatment on the Magnetic Properties of in-situ Formed Cu-Fe Composites (In-situ 법(法)에 의한 Cu-Fe 복합조직(複合組織)의 자기적(磁氣的) 특성(特性)에 미치는 가공(加工) 및 열처리(熱處理)의 영향(影響))

  • Shur, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.38-45
    • /
    • 1989
  • The Cu-Fe permanent magnet were prepared in situ process, which has economic and mass productive merits in producing multi filamentary composites. The purpose of this research was to study the effect of reduction ratio and heat treatment on magnetic property. As the reduction ratio of Cu-Fe wire increased, the filament structure became finer and interfilament distances decreased and the morphology of filament cross section became ribbon shape. As Fe content increased significantly. The coercivity and squareness of Cu-55 wt%Fe composite increased as a reduction ratio became higher, whereas they increased to maximum values at 0.09 mm ${\phi}$ for Cu-30 wt%Fe, and 0.066 mm ${\phi}$ for CU-45 wt%Fe respectively, and decreased for further reduction. The magnetic properties of Cu-Fe composites can be more enhanced by intermediate heat treatment. The best magnetic properties were obtained from Cu-55 wt%Fe composite deformed to 0.054 mm ${\phi}$ and annealed.

  • PDF

Behavior on the wear and friction of sealing composite for ship machinery (선박기계용 실링 복합재료의 마모 및 마찰거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.204-209
    • /
    • 2017
  • In order to use PUR/CuO Composites as the sealing materials for ships equipment, this research has been performed. PUR/CuO composites are produced by using ultrasonic waves. The increase of CuO leads to increase in the tensile strength and shore hardness. The cumulative wear volume shows a tendency to increase in proportional to sliding distance. As the CuO particles of these composites indicated, the friction coefficient was slightly increased. The major failure mechanisms were lapping layers, deformation of matrix, plowing, debonding of particles and microcracking by scanning electric microscopy photograph of the wear tested surface.

A Study on Thermal Properties of Epoxy Composites with Hybrid Fillers (하이브리드 필러를 함유한 에폭시 복합체의 열적 특성 연구)

  • Lee, Seungmin;Rho, Hokyun;Lee, Sang Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.33-37
    • /
    • 2019
  • In this study, the graded thermal properties of composites are obtained by difference in specific gravity of fillers including Cu, h-BN and GO powders in epoxy. Relatively heavy powders such as Cu and h-BN compared to GO mostly at the bottom layer, while light GO powders were dispersed in the top layer in the composites. The thermal conductivity of composites was gradually increased from 0.55 (0.52) W/mK to 2.82 (1.37) W/mK for GO/h-BN (GO/Cu) epoxy composites from surface to bottom. On the contrary, the coefficient of thermal expansion was decreased from 51 ppm/℃ to 23 ppm/℃ and from 57 ppm/℃ to 32 ppm/℃ for GO/Cu and GO/h-BN, respectively. The variation of thermal properties in composites is attributed due to intrinsic material properties of filler including thermal conductivity, morphology and the distribution by the specific weight of fillers. This simple strategy for realizing graded thermal composites by introducing different filler materials would be effective heat transfer at interface of heterostructure with large thermal properties such as inorganic semiconductor/plastic, metal/plastic, and semiconductor/metal.

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

Microstructure and Wear Property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ Composites Fabricated by Pressureless Infiltration Method (무가압 침투법에 의해 제조된 $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ 복합재료의 조직 및 마멸특성)

  • Woo, Kee-Do;Kim, Sug-Won;Ahn, Haeng-Keun;Jeong, Jin-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.254-259
    • /
    • 2000
  • Metal matrix composites(MMCs) reinforced with hard particles have many potential application in aerospace structures, auto parts, semiconductor package, heat resistant panels, wear resistant materials and so on. In this work, the effect of SiC partioel sizes(50 and 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on the microstructure and the wear property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ composites produced by pressureless infiltration method have been investigated using optical microscopy, scanning eletron microcopy(SEM) with EDS(energy dispersive spectrometry), hardness test, X-ray diffractometer(XRD) and wear test. In present study, the sound $Al-5Mg-X(Si,Cu,Ti)/SiC_p$(50 and 100 ${\mu}m$) composites were fabricated by pressureless infiltration method. The $Al-5Mg-0.3Si-O.1Cu-O.1Ti/SiC_p$ composite with $50 {\mu}m$ size of SiC particle has higher hardness and better wear property than any other composite with $100{\mu}m$ size of SiC particle produced by pressureless infiltration method. The hardness and wear property of $Al-5Mg/SiC_p$(50 and 100 ${\mu}m$) composites were enhanced by the addition of Si, Cu and Ti in Al-5%Mg matrix alloy.

  • PDF

Characterization of TiB2 Particle Reinforced Cu Matrix Composites Processed by Turbulent In-situ Mixing (난류용탕 in-situ 합성법에 의해 제조된 TiB2 입자강화 Cu 기지 복합재료의 특성)

  • Kim J. H.;Yun J. H.;Lee G. G.;Choi I. D.;Park Y. H.;Cho K. M.;Park I. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.809-813
    • /
    • 2005
  • A copper matrix composite reinforced by turbulent in-situ $TiB_2$ nanoparticle was Prepared by reactions of boron ana titanium. The microstructure, mechanical and electrical properties of the as-drawn composites were investigated. The results showed that the formed $TiB_2$ particles, which had a size of about from 50 to 200nm, exhibited a homogeneous dispersion in the copper matrix. Due to their reinforcement, the hardness and Young's modulus of $Cu-TiB_2$ composites were enhanced with increasing the cooling rate. Moreover, the electrical conductivity of the composites were improved with increasing the cooling rate.

Effects of Cu and Mg on Wear Properties of SiC Particulate Reinforced Al-Si Metal Matrix Composites (SiC 입자강화 Al-Si 복합재료의 내마멸성에 미치는 Cu , Mg의 영향)

  • Shim, Shang-Han;Chung, Yong-Keun;Park, In-Min
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 1990
  • The influences of Cu and Mg addition on wear properties of SiC particulate reinforced Al-Si metal(alloy) matrix composites were investigated. Metal matrix composites were prepared by combination of compocasting and hot pressing techniques. The main results obtained are as follows : 1) The composite with Mg addition exhibits letter wear resistance than that with Cu addition. It is considered that Mg addition improved wettability of matal matrix composite by the strong segregation to the SiC / Al matrix interface. 2) After homogenization treatment, it was found that the interfacial segregation of Mg was predominant, while that of Cu was not detected. 3) The SiC / Al-11Si eutectic composite exhibits better wear resistance than the SiC / Al-6Si hypoeutectic composite does. 4) It seems that the increase in the amount of Mg addition affects on the uniform dispersion of SiC particulates, on the refinement of microstructure and on age hardening and these effects cause wear resistance improvement of composites.

  • PDF

Performance of Nanosized Fe3O4 and CuO Supported on Graphene as Anode Materials for Lithium Ion Batteries (그래핀에 담지된 Fe3O4와 CuO 나노입자의 리튬이차전지 음극성능)

  • Jeong, Jae-Hun;Jung, Dong-Won;Han, Sang-Wook;Kim, Kwang-Hyun;Oh, Eun-Suok
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.239-244
    • /
    • 2011
  • In this study, $Fe_3O_4$/graphene and CuO/graphene composites were synthesized by the polyol reduction method using ethylene glycol, and their performances as the anodes of lithium ion batteries were evaluated. The physical characteristics of the synthesized composites were analyzed by SEM, XRD, and TGA. In addition, their electrochemical properties were examined by the electrochemical analysis techniques such as charge/discharge performance, cyclic voltammetry, and AC impedance spectroscopy. The cells composed of $Fe_3O_4$/graphene and CuO/graphene composites showed better performance than the graphene electrode, due to the dispersion of nanosized $Fe_3O_4$ or CuO on the surface of graphene and the formation of good electrical network in the electrode. Their composites kept the reversible capacity more than 600 mAh/g even after the charging/discharging of 30 cycles.

Microstructure and Wear Properties of Squeeze Cast Carbon Fiber/Copper Alloy Metal Matrix Composite (탄소섬유 강화 Cu 기지 금속 복합재료의 Squeeze Cast 조직 및 내마멸특성)

  • Kim, Nam-Soo;Chi, Dong-Chul;Cho, Kyung-Mok;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.238-247
    • /
    • 1992
  • A carbon fiber(CF) reinforced Cu-10%Sn alloy matrix composite was successfully fabricated by squeeze casting method employing preheated graphite mold and proper process controlling factors. The matrix solidification microstructure of the Cu-10%Sn/CF composite reveals ${\alpha}-dendrite$ and ${\alpha}+{\delta}$ eutectoid. To compare the squeeze cast Cu-10%Sn/CF compostie with PM route fabricated Cu-graphite composites for electric contact material, mechanical wear and electrical arc wear tests were performed. Mechanical wear rate of the Cu-10%Sn/CF is much lower than that of the Cu-graphite composite. Weight loss with a variation of contact number in electrical arc wear tests shows a similar trend between the squeeze cast Cu-10%Sn/CF and PM Cu-graphite composites.

  • PDF