• Title/Summary/Keyword: Cu composites

검색결과 225건 처리시간 0.034초

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Zheng, Gang;Li, Zhiang;Lu, Jinhua;Zhang, Jinhua;Chen, Long;Yang, Maoping
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.399-405
    • /
    • 2020
  • Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.

Cu-TiB2 복합재료의 마모거동에 따른 미세조직 관찰 (Observation on the Microstructures of Cu-TiB2 Composites with Wear Behavior)

  • 이태우;강계명
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.511-515
    • /
    • 2006
  • The dispersion hardened $Cu-TiB_2$ composites are a promising candidate for applications as electrical contact materials. The $Cu-TiB_2$ composites for electrical contact materials can reduce material cost and resource consumption caused by wear, due to their good mechanical and electrical properties. In this study, we investigated the wear phenomenon for $Cu-TiB_2$ composites fabricated with hot extrusion, by varying particle sizes and volume fractions of $TiB_2$. The wear tests were performed under the dry sliding condition with a fixed total sliding distance of 40 m. The contact loads at a constant speed of 3.5 Hz were 20, 40, 60, and 80 N. The friction coefficients and wear losses were measured during wear tests. Worn surfaces and wear debris after wear tests were investigated using the scanning electron microscope and the optical microscope. The microstructures of interface between Cu matrix and $TiB_2$ particle before and after wear tests were studied by the transmission electron microscope.

Fabrication and characterization of Copper/Silicon Nitride composites

  • Ahmed, Mahmoud A.;Daoush, Walid M.;El-Nikhaily, Ahmed E.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.131-140
    • /
    • 2016
  • Copper/silicon nitride ($Cu/Si_3N_4$) composites are fabricated by powder technology process. Copper is used as metal matrix and very fine $Si_3N_4$ particles (less than 1 micron) as reinforcement material. The investigated powder were used to prepare homogenous ($Cu/Si_3N_4$) composite mixtures with different $Si_3N_4$ weight percentage (2, 4, 6, 8 and10). The produced mixtures were cold pressed and sintered at different temperatures (850, 950, 1000, $1050^{\circ}C$). The microstructure and the chemical composition of the produced $Cu/Si_3N_4$ composites were investigated by (SEM) and XRD. It was observed that the $Si_3N_4$ particles were homogeneously distributed in the Cu matrix. The density, electrical conductivity and coefficient of thermal expansion of the produced $Cu/Si_3N_4$ composites were measured. The relative green density, sintered density, electrical conductivity as well as coefficient of thermal expansion were decreased by increasing the reinforcement phase ($Si_3N_4$) content in the copper matrix. It is also founded that the sintered density and electrical conductivity of the $Cu/Si_3N_4$ composites were increased by increase the sintering temperature.

W 입자크기가 W-Cu 복합재료의 전기 및 열전도도에 미치는 영향 (Effect of W Particle Size on the Electrical and Thermal Conductivity of W-Cu Composites)

  • 양주환;오승탁;박상우;문인형
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.43-49
    • /
    • 2004
  • The electrical and thermal conductivity of W-Cu composites were investigated as a function of the W-particle size and W-W contiguity. Powder mixtures were prepared by ball milling or mechanical alloying process, and then sintered at various temperatures. The electrical conductivity of sintered composite was increased with decreasing W grain size. Dependence of electrical conductivity on the W grain size was explained by the W-W contiguity concept. The thermal conductivity was increased with increasing the temperature up to $600^{\circ}C$ but decreased at the temperature above $600^{\circ}C$ Also, thermal conductivity value was influenced by the W particle size. Change of thermal conductivity in W-Cu composites was discussed based on the observed microstructural characteristics and theoretical considerations.

고전도성 부품용 Al-Cu 주조복합재료의 계면 특성 (Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications)

  • 김정민;김남훈;고세현
    • 한국주조공학회지
    • /
    • 제38권3호
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

CuO nanoparticle 및 fiber 로 구성된 PPS 복합재료의 sliding 조건하의 transfer film 에관한 연구 (Study of transfer film in the sliding of nanoscale CuO-filled and fiber-reinforced polyphenylene sulfide (PPS) composites)

  • 조민행;;박혜영;김윤준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.967-972
    • /
    • 2004
  • The role of transfer films formed during sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of composites. Four kinds of composites were included in this study: (1) unfilled PPS, (2) PPS+2%CuO, (3) PPS+2%CuO+5% carbon fiber (CF), and (4) PPS+2%CuO+15%Kevlar. The filler material CuO was in nanoscale particulate form and the reinforcing material was in the form of short fibers. The composites were prepared by compression molding at $310^{\circ}C$ and sliding tests were run in the pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55-60 HRC and finished to a surface roughness of 0.09-0.10 ${\mu}m$ Ra. Wear tests were run for 6 hrs at the sliding speed of 1 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using AFM and SEM. The results showed that as the transfer film became smooth and uniform, wear rate decreased. PPS+2%CuO+15%Kevlar composite showed the lowest steady state wear rate in this study and its transfer film showed the smoothest and the most uniform characteristics. The examination of worn surfaces of PPS+2%CuO composite using X-ray area scanning (dot mapping) showed back-transfer of steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate.

  • PDF

구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구 (A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites)

  • 홍명선;배경민;최웅기;이해성;박수진;안계혁;김병주
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.313-319
    • /
    • 2012
  • 본 연구에서는 Polyacrylonitrile (PAN)계 탄소섬유 표면에 구리도금 표면처리가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향에 관하여 관찰하였다. 탄소섬유 표면특성은 주사전자현미경, X-선 광전자 분광법, X-선 회절분석기, 접촉각 측정기로 측정하였고, 탄소섬유 강화 복합재료의 기계적 계면 물성은 층간전단강도(interlaminar shear strength, ILSS)와 파괴인성(critical stress intensity factor, $K_{IC}$)측정을 통하여 알아보았다. 실험결과로부터, 기계적 계면물성은 탄소섬유 표면에 COOH group과 도금된 구리함량이 증가됨에 따라 순차적으로 증가되는 것이 확인되었으나, 도금시간을 길게 하여 과량의 구리가 도입되었을 경우 기계적 계면 물성을 도리어 감소시키는 것으로 확인되었다. 결론적으로 구리함량이 탄소섬유 복합재료의 기계적 계면물성을 결정하는 중요 요소라 판단되나, 최적의 함량이상에서는 계면분리에 의한 물성저하의 원인이 될 수 있다.

제강Slag 충진 폐플라스틱/복합 전도성 filler복합재료의 전자파 차폐 효과 (EMI Shielding Efficiency of Recycled plastic/Hybrid Conductive filer Composites filled Electro Arc furnace Slag)

  • 강영구;송종혁
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.80-85
    • /
    • 2004
  • Electromagnetic interference(EMI) shielding characteristics of composite filled with Cu flake and carbon brush powder as hybrid conductive filler and EAF slag have been studied. The coaxial transmission line method of ASTM D4935-99 was used to measure the EMI Shielding effectiveness of composites as formulation in frequency rage $100\~1,000MHz$ The SE also increases with the increase in flier loading. The hybrid filler filled composites show higher SE compared to that of only Cu flake. The correlation between SE and conductivity of the various composites is also discussed. The results indicate that the composites having higher filler loading$({\geq}40wt.\%)$ can be used for the purpose of safety materials to protect hazardous electromagnetic interference.

Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성 (Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders)

  • 김택수;이진규;김휘준;배정찬
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

Mechanical Properties of W-X (X=Cu, Ag or BAg-8) Composites

  • Hanado, H.;Hiraoka, Y.;Inoue, T.;Akiyoshi, N.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1054-1055
    • /
    • 2006
  • Bend tests were performed at temperatures between 77 and 473K for W-19vol%Cu, W-22vol%Ag and W-19vol%(BAg-8) composites. Yield and maximum strengths and ductility of the composite were discussed in terms of microstructure and fractography. Results are summarized as follows. (1) Almost no difference was recognized in yield strength between the composites. In contrast, a large difference was recognized in maximum strength and ductility between the composites. (2) Inferior mechanical properties of W-Ag composite to W-Cu composite are attributed to heterogeneous distribution of Ag-phases, whilst inferior mechanical properties of W-(BAg-8) composite to W-Cu composite are attributed to large pores at grain boundaries.

  • PDF