• Title/Summary/Keyword: Cu catalyst

Search Result 356, Processing Time 0.028 seconds

N3S-ligated Copper(II) Complex Catalyzed Selective Oxidation of Benzylic Alcohols to Aldehydes under Mild Reaction Conditions

  • Dharmalingam, Sivanesan;Koo, Eunhae;Yoon, Sungho;Park, Gyoosoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.715-720
    • /
    • 2014
  • A Cu(II) complex with an three nitrogens and one sulfur coordination environment was synthesized and characterized. Its redox potential was observed at 0.483 V vs. NHE, very similar to that of a Cu-containing fungal enzyme, galactose oxidase, which catalyzes the oxidation of alcohols to corresponding aldehydes with the concomitant reduction of molecular oxygen to water. The Cu(II) complex selectively oxidizes the benzylic alcohols using TEMPO/$O_2$ under mild reaction conditions to corresponding aldehydes without forming any over-oxidation product. Moreover, the catalyst can be recovered and reused multiple times for further oxidation reactions, thus minimizing the waste generation.

Adsorption and Thermal Reduction Mechanism of CO2 on ZnO/Cu Model Catalysts

  • Kim, Yeonwoo;Kim, Sehun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.191.2-191.2
    • /
    • 2014
  • Cu/ZnO/$Al_2O_3$ is widely used methanol synthesis catalyst at elevated pressures P (50 to 100 bar) and temperatures T (473 to 573 K) using $CO_2$, CO, $H_2$ syngas mixture. Although Cu step and planar defects have been regarded as active sites in this catalyst, detailed $CO_2$ hydrogenation procedure has been still unknown and debated as well as initial intermediate. In this study, we investigated the mechanism of $CO_2$ hydrogenation on Cu(111) model surface at P (1 bar) and T (298 to 450 K) using reflection absorption infrared spectroscopy (RAIRS). Two distinct formates by hydrogenation of $CO_2$, on step and on terrace, show different behavior with elevating temperature. The peak intensity of on step formate was continuously decreased above 360 K up to 450K in contrast to the increase of on terrace formate. These phenomena are strong possibilities that the formate is initial intermediate and is desorbed by hydrogenation reaction because thermal desorption temperature of formate (~470 K) is much higher than desorption of on step formate. And the formate production peak of on step site was weakly correlated with CO formation.

  • PDF

Study on the Mechanism and Modeling for Super-filling of High-Aspect-Ratio Features with Copper by Catalyst Enhanced Chemical Vapor Deposition Coupled with Plasma Treatment (플라즈마 처리와 결합된 Cu 촉매반응 화학기상증착법의 메커니즘과 고종횡비 패턴의 충진양상 전산모사에 대한 연구)

  • Kim, Chang-Gyu;Lee, Do-Seon;Lee, Won-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.334-341
    • /
    • 2011
  • The mechanism behind super-filling of high-aspect-ratio features with Cu by catalyst-enhanced chemical vapor deposition (CECVD) coupled with plasma treatment is described and the metrology required to predict the filling feasibility is identified and quantified. The reaction probability of a Cu precursor was determined as a function of substrate temperature. Iodine adatoms are deactivated by the bombardment of energetic particles and also by the overdeposition of sputtered Cu atoms during the plasma treatment. The degree of deactivation of adsorbed iodine was experimentally quantified. The quantified factors, reaction probability and degree of deactivation of iodine were introduced to the simulation for the prediction of the trench filling aspect by CECVD coupled with plasma treatment. Simulated results show excellent agreement with the experimental filling aspects.

Dimethyl Carbonate Synthesis by Methanol Oxidative Carbonylation (메탄올 산화 카르보닐화에 의한 디메틸카보네이트 합성)

  • Nam, Jeong-Kwang;Cho, Deug-Hee;Suh, Jeong-Kwon;Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.530-534
    • /
    • 2011
  • The synthesis of dimethyl carbonate by liquid phase oxidative carbonylation of methanol was studied under batch reaction system. Reaction factors such as effect on various metals, anion containing in copper catalyst, temperature, carbon monoxide and oxygen molar ratio and copper content were investigated. In particular $CuCl_2{\cdot}2H_2O$ showed the excellent of the methanol conversion 65.2%, DMC selectivity 96.6% reaction condition under 1.0 g, $150^{\circ}C$, MeOH/CO/$O_2$=0.2/0.215/0.05 (molar ratio). $CuCl_2$ led to corrosion of the reactor. Thus, a new catalyst system using supports was investigated to resolve these corrosion problem. Influence on various supports were examined and copper catalyst supported on zeolite Y showed the most excellent activity on the formation of dimethyl carbonate. The amount of Fe dissolved during the reaction using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometer) was compared with catalysts, calcined Cu/zeolite Y showed the lower value below 5% than $CuCl_2-2H_2O$.

A Study on Selective Catalytic Reduction on Diesel Particulate Filter Catalyst and Coating Technology the Removal of Particulate Matters and NOx for Old Special Cargo Vehicles (노후 특수·화물 차량 PM/NOx 저감을 위한 SDPF 촉매 및 코팅 기술 연구)

  • Jeong, Kwanhyoung;Seo, Philwon;Oh, Hungsuk;Kim, Jongkook;Kang, Soyeon;Kang, Jeongho;Kim, Hyunjun;Shin, Byeongseon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.695-699
    • /
    • 2021
  • In this study, Selective Catalytic Reduction on Diesel Particulate Filter (SDPF) after-treatment system was introduced to simultaneously remove NOx and Particulate Matters (PM) emitted from trucks and special cargo vehicles using old engine. First, in order to select an Selective Catalytic Reduction (SCR) catalyst for SDPF, the de-NOx performance of V/TiO2 and Cu-Zeolite catalysts were compared, and the SCR catalyst characteristics were analyzed through Brunauer Emmett Teller (BET), X-ray Diffraction (XRD) and NH3-TPD (Temperature Programmed Desorption). From the activity test results, the Cu-zeolite catalyst showed the best thermal stability. For optimal coating of SDPF, slurry was prepared according to the target particle size. From the coating stability and back pressure test results of SDPF according to the amount of SCR coating, As a result of comparing coating stability, back pressure, and de-NOx performance by producing A, B, and C samples for each loading amount of the SDPF catalyst, the best results were found in the B sample. The engine dynamometer test was conducted for the optimal SDPF after-treatment system, and the test results satisfied Eu-5 regulations.

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Direct Synthesis of Dimethyl Ether From Syngas in Slurry Phase Reactor (액상 슬러리 반응기에서 합성가스로부터 DME 직접 제조)

  • Hwang, Gap-Jin;Kim, Jung-Min;Lee, Sang-Ho;Park, Chu-Sik;Kim, Young-Ho;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.119-128
    • /
    • 2004
  • DME(Dimethyl Ether) was directly produced from the synthesis gas using the slurry phase reactor. The catalyst for DME production prepared two types (A type; Cu:Zn:Al=57:33:10, B type; Cu:Zn:Al=40:45:15, molar ratio). It was evaluated for the effect of the reaction medium oil using the small size slurry phase reactor. DME production yield and the methanol selectivity decreased in the order: n-hexadecane oil> mineral oil> therminol oil. The long-term test of DME production was carried out using A and B type catalyst, and n-hexadecane oil and mineral oil, respectively. It was confirmed that the use of A type for the catalyst and n-hexadecane for the reaction medium oil was very useful for the viewpoint of the DME production form the synthesis gas.

Physicochemical Characteristics of Waste Catalyst and Their In-Process Products from Recycling (폐촉매 및 재활용 중간생성물의 물리화학적 특성 평가)

  • Park, Joon-Seok;Jeun, Byung-Do;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.150-158
    • /
    • 2011
  • This research was conducted to estimate the physicochemical characteristics of waste catalyst and its in-process product from recycling and to suggest fundamental data for religious systems such as quality standards. Mo and V contents were increased from the waste catalyst to calcinated material and oxidized material. In the results of a heavy metals leaching test, Pb was not detected in any catalyst, calcinated and oxidized materials. Cu was not detected in the catalyst. However, it was detected in ${\leq}$1.16 mg/l for calcinated material and in 1.34~13.73 mg/l for $MoO_3$ oxidezed material. Concentrations in recycling in-process products (calcinated and oxidized materials) were higher than those of waste catalyst. Oil content of catalyst waste ranged from 0.01-14.03 wt%. Oil contents of calcinated and oxidized materials were greatly decreased compared to the catalyst waste. Carbon and sulfur contents as chemical poisoning material of catalyst waste ranged from 0.33-76.08 wt% and 5.00-22.00 wt%, respectively. The carbon contents of calcinated and oxidized materials showed below 20 wt%. The sulfur content showed below 8wt% for calcinated material and below 0.22 wt% for oxidized material.