• 제목/요약/키워드: Cu alloy

검색결과 1,271건 처리시간 0.027초

초미세 결정립 Cu-3%Ag 합금의 기계적 물성과 전기 전도도 (Mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy)

  • 고영건;이철원;남궁승;신동혁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.413-416
    • /
    • 2009
  • The paper deals with the mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy as a function of strain imposed by equal-channel angular pressing. When inducing the effective strain of 12, the initial grain site of ${\sim}50{\mu}m$ is evidently reduced within the range of $0.2-0.3{\mu}m$ in size, having a reasonably equiaxed shape. The results of tension tests at room temperature exhibit that the tensile strength of the present alloy increases with increasing the amount of strain whereas losing electrical conductivity slightly. This phenomenon can be explained based on fine grained structure together with the non-equilibrium state of grain boundaries.

  • PDF

이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질 (Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling)

  • 이성희;한승전
    • 한국재료학회지
    • /
    • 제26권1호
    • /
    • pp.8-12
    • /
    • 2016
  • Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.

중간가공열처리한 AI-Li계 합금의 고온변형거동 (The Hot Deformation Behaviors of Intermediate Thermo-Mechanical Treated Al-Li Based Alloy)

  • 유창영;진영철
    • 열처리공학회지
    • /
    • 제4권3호
    • /
    • pp.1-6
    • /
    • 1991
  • In this study, intermediate thermo-mechanical treated Al-2.0 wt%Li, and Al-2.0 wt%Li-1.2 wt%Cu-1.0 wt%Mg-0.12 wt%Zr alloys were tested in tension at $10^{\circ}C$ and elevated temperature(100, 200 and $300^{\circ}C$). The results are follows : The tensile strength of Al-Li-Cu-Mg-Zr alloy is the highest but the elongation of Al-Li alloy is the highest(106%) among the all alloys in tension at $300^{\circ}C$. The Portervin-LeChartlier effect is showed in AI-Li-Cu-Mg-Zr alloy at 10 and $100^{\circ}C$, because of tangled dislocation by Mg and Cu. In the true stress-strain curves of all alloy, the peaks of stress at $300^{\circ}C$ are showed at the strain less than 0.1. In the binary alloy, the dynamic restoration process at 200 and $300^{\circ}C$ is nearly similar to dynamic recovery type. The hot deformation stress is decreased with increase of dynamic recovery degree, but the elongation is increased. When the strain the strain rate are constant, the temperature dependence of hot deformation stress is increased with increase of deformation temperature. The elongation and degree of dynamic recovery are decreased with increase of hot deformation activation energy, but the deformation stresses slightly increased.

  • PDF

안정화 열처리에 의한 Al-4.8Zn-1.3Mg계 합금 압출재 특성 평가 (Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy)

  • 이창연
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.818-823
    • /
    • 2018
  • In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization($460^{\circ}C$, $4h+510^{\circ}C$, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal $Mg_2Zn$, $Al_5Cu$, $Al_{13}Cu$ formed between dendrities. After homogenization, MgZn, $Al_4Cu$, $Al_{13}Cu$ phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging($100^{\circ}C$, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.

Rod Milling과 Chemical Leaching에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 결정화 및 자기적 특성 (Crystallization and Magnetic Properties of Non-Equilibrium Al(Fe-Cu) Alloy Powders Produced by Rod Milling and Chemical Leaching)

  • 김현구
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.486-492
    • /
    • 2004
  • We report the crystallization and magnetic properties of non-equilibrium $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}(x=0.25, 0.50, 0.75)$ alloy powders produced by rod-milling as well as by new chemical leaching. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h or 500 h milling, only the broad peaks of nano bcc crystalline phases were detected in the XRD patterns. The crystallite size, the peak and the crystallization temperatures increased with increasing Fe. After being annealed at $600{^\circ}C$ for 1 h for as-milled alloy powders, the peaks of bcc $AlCu_{4}\;and\;Al_{13}Cu_{4}Fe_{3}\;for\;x=0.25,\;bcc\;AlCu_{4}\;and\;Al_{5}Fe_{2}\;for\;x=0.50,\;and\;Al_{5}Fe_{2},\;and\;Al_{0.5}Fe_{0.5}\;for\;x=0.75$ are observed. After being annealed at $500{^\circ}\;and\;600{^\circ}C$for 1 h for leached specimens, these non-equi-librium phases transformed into fcc Cu and $CuFe_{2}O_{4}$phases for the x=0.25 specimen, and into bcc ${\alpha}-Fe,\;fcc\;Cu,\;and\;CuFe_{2}O_{4}$ phases for both the x=0.50 and the x=0.75 specimens. The saturation magnetization decreased with increasing milling time for $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}$ alloy powders. On cooling the leached specimens from $800{\~}850^{\circ}C$,\;the magnetization first sharply increase at about $491.4{\circ}C,\;745{\circ}C,\;and\;750.0{\circ}C$ for x=0.25, x=0.50, and x=0.75 specimens, repectively.

Al-Zn-Mg-Cu계 알루미늄 합금의 열간 균열 특성에 미치는 합금조성의 영향 (The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System)

  • 김지훈;조재섭;심우정;임항준
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.669-675
    • /
    • 2012
  • Hot tearing was the most significant casting defect when the castability evaluation of the Al-Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性) (The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy)

  • 이기대;남상용
    • 대한치과기공학회지
    • /
    • 제21권1호
    • /
    • pp.27-41
    • /
    • 1999
  • 치과용 Ag기 합금에서 30wt%Pd 및 10wt%Cu의 용질농도의 구성비가 3이 되는 3원 합금과 여기에 2wt% Au의 첨가에 미치는 석출상의 영향을 조사 분석하여 아래와 같은 결론을 얻었다. Ag-Pd-Cu 3원 합금은 $\alpha$ 단일상에서 Ag-rich ${\alpha}_2 $ 및 PdCu 규칙상에 의해서 경화반응이 진행되며 연속승온시효곡선에 의하면 100-$300^{\circ}C$의 저항증가와 300-$500^{\circ}C$의 저항감소라고 하는 2단계 변화에 의해서 경화곡선이 얻어졌다. 또한 본 합금의 시효과정에서는 ${\alpha}{\to}{\alpha}_2+PdCu{\to}$의 2상 분리반응에 의하여 경화원인이 되었다. 석출과정은 ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ 이고 Cu-rich인 ${\alpha}_2$상은 거의 나타나지 않으며 최고 경도값은 ${\alpha}_2$ 및 PdCu의 2상공존 구역에서 나타났다. 미량의 Au첨가에 의해서 경화는 다소 증가하지만 경화성보다는 내식성에 보다 크게 기여하였고 Pd/Cu=3인 합금은 Pd/Cu=1 또는 1.7의 합금보다도 전반적으로 경도값은 가장 낮게 나타나며 이것은 치과용 Ag기 합금의 시효경화성에는 Cu농도가 크게 기여하였다. 불연속석출물인 nodule 생성물은 입계에 우선 형성되어 $\alpha$ matrix로 진행되어 nodule 석출물은 부드러운 경계면을 가지고 $\alpha$ matrix주위에 strain matrix를 나타내므로 nodule 형성이 본 합금의 시효경화를 야기하였다. 내식성은 Pd 함량이 가장 높은 본 합금에서 매우 양호하게 나타났으며 Pd 함량이 증가가 내식성의 향상에 크게 기여하여 미량의 Au 첨가에 의해서 보다 현저히 효과를 얻었다. 본 합금의 시효열처리 조건은 $450^{\circ}C$ 적절하며 1-120min 시효시간에 걸쳐서 소정의 경도 값을 얻을 수 있고 시효경화성 및 내식성의 결과로부터 Ag-30wt%Pd-10wt%Cu합금 및 미량 Au 합금은 치과용 금속재료로 적합하였다.

  • PDF

Cu를 함유한 HSLA강의 미세 조직과 인성에 미치는 냉각 속도의 영향 (Effect of cooling rate on the microstructure and impact toughness of Cu-bearing HSLA steels)

  • 박태원;심인옥;김영우;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.122-131
    • /
    • 1995
  • The effects of cooling rate on the microstructures, precipitation of Cu-cluster, .epsilon.-Cu and impact toughness of high strength low alloy(HSLA) steel were studied using hardness tester, impact tester, DSC(differential scanning calorimetry), AES(auger electron spectroscopy) and TEM(transmission electron microscopy). Not only the Cu-precipitates but also the segregation of Cu, As, Sb, P, S, N, Sn along grain boundary were not observed at the specimens heat treated from 800.deg. C to 300.deg. C with the cooling time of 12-125 sec. The Cu-cluster, .epsilon.-Cu are formed by introducing ageing after cooling and the effect of precipitates on hardening increase after cooling was the same in all cooling rate. The peak hardness was obtained at an ageing of 500.deg. C in all cooling conditions. The impact energy become higher as the cooling time increases. This fact can be explained to be due to the tempering effect applied on the cooling stage since the present alloy has a relatively high Ms temperature and the local high concentration of the retained austenite.

  • PDF

THIN FILM ADHESION IN Cu/Cr/POLYIMIDE AND Cu/Cu-Cr/POLYIMIDE SYSTEMS

  • Joh, Cheol-Ho;Kim, Young-Ho;Oh, Tae-Sung;Park, Ik-Sung;Yu, Jin
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.379-385
    • /
    • 1996
  • Adhesion of Cu/Cr and Cu/$Cu_xCr_{1-x}$ thin films onto polyimide substrates has been studied. For an adhesion layer, Cr or Cu-Cr alloy films were deposited onto polyimide using DC magnetron sputtering machine. Then Cu was sputter-deposited and finally, Cu was electroplated. Adhesion was evaluated using $90^{\circ}C$ peel test or T-peel test. Plastic deformation of the peeled metal layer was qualitatively measured using XRD technique. It is confirmed that high interfacial fracture energy and large plastic deformation are important to enhance the peel adhesion strength. High peel strength is obtained when the interface is strongly bonded. More ductile film has higher peel strength. In Cu-Cr alloy films, opposite effects of the Cr addition in the alloy film on the peel strength are operative: a beneficial effect of strong interfacial bonding and a negative effect of smaller plastic deformation.

  • PDF

Design of Copper Alloys Preventing Grain Boundary Precipitation of Copper Sulfide Particles for a Copper Disposal Canister

  • Minkyu Ahn;Jinwoo Park;Gyeongsik Yu;Jinhyuk Kim;Sangeun Kim;Dong-Keun Cho;Chansun Shin
    • 방사성폐기물학회지
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2023
  • The major concern in the deep geological disposal of spent nuclear fuels include sulfide-induced corrosion and stress corrosion cracking of copper canisters. Sulfur diffusion into copper canisters may induce copper embrittlement by causing Cu2S particle formation along grain boundaries; these sulfide particles can act as crack initiation sites and eventually cause embrittlement. To prevent the formation of Cu2S along grain boundaries and sulfur-induced copper embrittlement, copper alloys are designed in this study. Alloying elements that can act as chemical anchors to suppress sulfur diffusion and the formation of Cu2S along grain boundaries are investigated based on the understanding of the microscopic mechanism of sulfur diffusion and Cu2S precipitation along grain boundaries. Copper alloy ingots are experimentally manufactured to validate the alloying elements. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy demonstrates that Cu2S particles are not formed at grain boundaries but randomly distributed within grains in all the vacuum arc-melted Cu alloys (Cu-Si, Cu-Ag, and Cu-Zr). Further studies will be conducted to evaluate the mechanical and corrosion properties of the developed Cu alloys.