• Title/Summary/Keyword: Cu/Zn superoxide dismutase

Search Result 218, Processing Time 0.03 seconds

Effect of troglitazone on radiation sensitivity in cervix cancer cells

  • An, Zhengzhe;Liu, Xianguang;Song, Hye-Jin;Choi, Chi-Hwan;Kim, Won-Dong;Yu, Jae-Ran;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.78-87
    • /
    • 2012
  • Purpose: Troglitazone (TRO) is a peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases $Cu^{2+}/Zn^{2+}$-superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Materials and Methods: Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 ${\mu}M$ of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. Results: By 5 ${\mu}M$ TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0-G1 phase cells were increased in HeLa and Me180 by 5 ${\mu}M$ TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 ${\mu}M$ TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 ${\mu}M$ TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. Conclusion: TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalase-mediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR ${\gamma}$ expression level.

Effects of Sea Tangle (Laminaria japonica) and Fucoidan Components on Anti-aging Action (노화억제작용에 미치는 다시마(Laminaria japonica)와 후코이단 성분의 영향)

  • 최진호;김대익;박수현;김동우;이종수;유종현;정유섭
    • Journal of Life Science
    • /
    • v.9 no.4
    • /
    • pp.439-452
    • /
    • 1999
  • This study was designed to investigate the effects of sea tangle (Laminaria japonica) extract and fucoidan components on anti-aging action. Sprague-Dawley(SD) male rats (210$\pm$5g) were fed experimental diets Dasi-Ex group: sea tangle extract powder of 4.0% added to control diet; Fuco-I, II and III groups: funcoidan powder of 1, 2 and 3% added to Dasi-Ex group for 45 days. Hydroxyl radical (.OH) formations were significantly inhibited (10-20% and 25-30%) in serum and brain mitochondria of Dasi-Ex and Fuco-I, II and III groups compared with control group. Significant differences in .OH formations of brain mitochondria in Dasi-Ex and Fuco-I groups could not be obtained, but.OH formations of brain microsomes resulted in a significant decrease (15-20%) in Fuco-II and III groups compared with control group. Basal oxygen radical (BOR) formations were significantly decreased about 10% and 13-15% in brain mitochondria of Dasi-Ex and Fuco-I group, and Fuco-II, III groups, and also decreased about 10% and 15-20% in brain microsomes of Dasi-Ex and Fuco-I groups, and Fuco-II, III groups. LPO levels of brain mitochondria and microsomes were significantly inhibited about 10% in Dasi-Ex and Fuco-I, II groups and 15% in Fuco-III groups. Oxidized proteins (>C=O) were significantly inhibited about 10% in serum of Dasi-Ex and Fuco-I, II, III groups and brain mitochondria of Dasi-Ex group, while remarkably inhibited (30~35%) in brain mitochondria of Fuco-I, II and III groups. Nitric oxide (NO) levels were significantly inhibited (12~15%) in serum of Fuco-I, II and III groups, but there no significant difference in serum NO levels of Dasi-Ex group. Superoxide dismutase (SOD) activities were remarkably increased (30~ 60%) in serum of Fuco-I, II and III groups, but there were no significant differences in SOD activities in serum of Dasi-Ex group. Catalase (CAT) activities were significantly increased about 20% in serum of Dasi-Ex and Fuco-I, II, III groups. Mn-SOD activities in brain mitochondria were significantly increased about 17% in Dasi-Ex group, while remarkably increased 26~36% in Fuco-I, II, III groups. Cu,Zn-SOD activities in brain cytosol were dose-dependently of fucoidan increased 10%, 12% and 18%, respectively, compared with control group. These results suggest that anti-aging effects of fucoidan may play a pivotal role in attenuating a various age-related changes such as chronic degenerative disease and senile dementia.

  • PDF

Characterization of Enzymes Against Oxygen Derivatives Produced by Rhodobacter sphaeroides D-230 (Rhodobacter sphaeroides D230이 생성하는 산소 유도체에 작용하는 효소의 특성)

  • 김동식;이혜주
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • The activities of enzymes that act on oxygen derivatives in Rhodobacter sphaeroides D-230 were investigated under various culture conditions. Intracellular SOD activity from the cells grown in aerobic or anaerobic culture conditions was highest at pH 7.0 and pH 8.0, respectively. On the other hand, extracellular SOD activity was highest at pH 6.0. Catalase activity was highest at neutral pH in both cases. Growth of R. sphaeroides D-230 in aerobic or anaerobic culture conditions was inhibited by methyl viologen. As R. sphaeroides D-230 was cul-tured aerobically, SOD activity was increased about 2-fold by addition of iron ion. But $Mn^+2$ had little effect on the SOD activity of R. sphaeroides D-230 grown in aerobically. NaCN, the inhibitor of Cu$.$Zn-SOD, did not inhibit SOD activity. But, $NaN_3$, the inhibitor of Mn-SOD, inhibited SOD activity in anaerobic cultures con-dition. Therefore, R. sphaeroides D-230 produce Mn-SOD in anaerobic condition, although Fe-Sod is produced in aerobic condition. The activity of catalase was induced by methyl viologen, however, extremely inhibited by NaCN and $NaN_3$.

Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress

  • Lee, Dong-Gi;Ahsan, Nagib;Kim, Yong-Goo;Kim, Kyung-Hee;Lee, Sang-Hoon;Lee, Ki-Won;Rahman, Md. Atikur;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.159-166
    • /
    • 2013
  • We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369-3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress ($42^{\circ}C$) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.

The Effect of Laser Acupuncture of Five-Transport-Points of the Heart Meridian in L-NAME-Induced Hypertensive Rats (수소음심경 오수혈 혈위별 레이저 침자가 고혈압 흰쥐의 혈압에 미치는 영향)

  • Shin, Wook;Lee, Yumi;Kim, Wangin;Choi, Donghee;Kim, Mirae;Youn, Daehwan;Na, Changsu
    • Korean Journal of Acupuncture
    • /
    • v.34 no.1
    • /
    • pp.56-69
    • /
    • 2017
  • Objectives : The purpose of this study is to compare the effects of laser acupuncture to the 532 nm on the five transport points with the heart meridian for treatment to hypertensive disease in rats with L-NAME induced hypertensive. Methods : Hypertensive was induced by L-NAME for 3 weeks. The laser acupuncture therapy on the five transport points of heart meridian(Laser Well Point-HT9, Laser Brook Point-HT8. Laser Stream Point-HT7, Laser River Point-HT4 and Laser Sea Point-HT3) was treated twice a week for 5 times. The hypertensive was measured using a cardiac hypertrophy, atherogenic index, TG/HDL-cholesterol ratio, TCHO, HDLC, TG, AST, ALT, antioxidative effectiveness and glutathione peroxidase quality of hypertensive rats induced by L-NAME. Results : Blood pressure were decreased significantly after the laser acupuncture of Well, Brook and Sea Point groups. Cardiac hypertrophy were decreased at the laser acupuncture of Brook and Stream Point groups. Athrogenic index was decreased at the laser acupuncture of Well, Stream, River and Sea Point groups. TG/HDL-cholesterol ratio was decreased at the laser acupuncture of all groups. Total cholesterol was decreased significantly at the laser acupuncture of Well Point group. High density lipoprotein cholesterol and total cholesterol were decreased significantly at the laser acupuncture of Well, Stream and River Point groups. Triglyceride was decreased significantly at the laser acupuncture of Stream Point group. Cu/Zn-Superoxide Dismutase (Cu/Zn-SOD) and glutathione peroxidase(GPX) were increased significantly at the laser acupuncture of Well Point group. Conclusions : The laser acupuncture treatment in five transport points of the Heart Meridian was effective for lowering blood pressure, cardiac hypertrophy, Atherogenic index and HTR, and for enhancing antioxidant activity.

Antioxidant Effects of Sea Tangle Added Korean Cabbage Kimchi in Vitro and in Vivo (다시마를 첨가한 배추김치의 항산화 효과)

  • Ku, Hwa-Suk;Noh, Jeong-Sook;Kim, Hyun-Ju;Cheigh, Hong-Sik;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2007
  • The antioxidant effect of Korean cabbage kimchi containing 20% of sea tangle (SK) was studied in the rats fed with high fat diet (HFD) for 8 weeks. The rats (n=40) were divided into four experimental groups as a high fat diet group (HFD), HFD supplemented either with Korean cabbage kimchi used as experimental control (HCK), with SK (HSK), or with J-kimchi (HJK) that was purchased at the local market. The amount of kimchi supplemented was 10%. DPPH radical scavenging activities of SK were significantly higher than those of CK. Kimchi suppressed the hepatic lipid peroxidation significantly, especially by HSK (p<0.05). Inhibition of thiobarbituric acid reactive substances (TBARS) formation in HSK was the greatest among the kimchi groups (p<0.05). The activities of $Cu{\cdot}Zn$-superoxide dismutase (SOD), Mn-SOD and catalase decreased significantly (p<0.05) by kimchi supplementation. SOD and catalase activities of HSK were found to be the lowest among the kimchi groups. The decreased enzyme activity in kimchi group might be due to the less amount of lipid peroxides produced in the rats fed kimchi diet. The lowest antioxidative enzyme activities observed in HSK were in line with those of hepatic POV and TBARS of HSK. Our findings confirmed that kimchi acted as an antioxidant in the high fat fed rats and its antioxidant effect was significantly increased by the addition of sea tangle.

Efficacy evaluation of novel organic iron complexes in laying hens: effects on laying performance, egg quality, egg iron content, and blood biochemical parameters

  • Jiuai Cao;Jiaming Zhu;Qin Zhou;Luyuan Zhao;Chenhao Zou;Yanshan Guo;Brian Curtin;Fei Ji;Bing Liu;Dongyou Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.498-505
    • /
    • 2023
  • Objective: This study was conducted to determine the optimal dose of novel iron amino acid complexes (Fe-Lys-Glu) by measuring laying performance, egg quality, egg iron (Fe) concentrations, and blood biochemical parameters in laying hens. Methods: A total of 1,260 18-week-old healthy Beijing White laying hens were randomly divided into 7 groups with 12 replicates of 15 birds each. After a 2-wk acclimation to the basal diet, hens were fed diets supplemented with 0 (negative control, the analyzed innate iron content was 75.06 mg/kg), 15, 30, 45, 60, and 75 mg Fe/kg as Fe-Lys-Glu or 45 mg Fe/kg from FeSO4 (positive control) for 24 wk. Results: Results showed that compared with the negative and positive control groups, dietary supplementation with 30 to 75 mg Fe/kg from Fe-Lys-Glu significantly (linear and quadratic, p<0.05) increased the laying rate (LR) and average daily egg weight (ADEW); hens administered 45 to 75 mg Fe/kg as Fe-Lys-Glu showed a remarkable (linear, p<0.05) decrease in feed conversion ratio. There were no significant differences among all groups in egg quality. The iron concentrations in egg yolk and serum were elevated by increasing Fe-Lys-Glu levels, and the highest iron content was found in 75 mg Fe/kg group. In addition, hens fed 45 mg Fe/kg from Fe-Lys-Glu had (linear and quadratic, p<0.05) higher yolk Fe contents than that with the same dosage of FeSO4 supplementation. The red blood cell (RBC) count and hemoglobin content (linear and quadratic, p<0.05) increased obviously in the groups fed with 30 to 75 mg Fe/kg as Fe-Lys-Glu in comparison with the control group. Fe-Lys-Glu supplementation also (linear and quadratic, p<0.05) enhanced the activity of copper/zinc-superoxide dismutase (Cu/Zn-SOD) in serum, as a result, the serum malonaldehyde content (linear and quadratic, p<0.05) decreased in hens received 60 to 75 mg Fe/kg as Fe-Lys-Glu. Conclusion: Supplementation Fe-Lys-Glu in laying hens could substitute for FeSO4 and the optimal additive levels of Fe-Lys-Glu are 45 mg Fe/kg in layers diets based on the quadratic regression analysis of LR, ADEW, RBC, and Cu/Zn-SOD.

Purification and Identification of Antioxidant Compounds from Dolichos lablab L. Seeds (백편두의 항산화 물질 분리 및 동정)

  • Kwon, Nam Woo;Kim, Jae Yeon;Cho, Yong Beom;Hwang, Bang Yeon;Kim, Jun Gu;Woo, Sun Hee;Lee, Moon Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.419-426
    • /
    • 2019
  • Background: This study aimed to identify antioxidant compounds from the seeds of Dolichos lablab L. by bioassay-guided isolation and recrystallization. Methods and Results: The water layer of D. lablab L. seed extract inhibits intracellular reactive oxygen species (ROS) expressing the 2',7'-dichlorofluorescein diacetate (DCF-DA), Cu/Zn superoxide dismutase (SOD) and catalase genes, as determined by quantitative real-time PCR (qRT-PCR). Two compounds were purified from the water layer of the seeds of D. lablab L. using column chromatography and prep-high performance liquid chromatography (HPLC). Using nuclear magnetic resonance (NMR) and electrospray Ionization mass spectrometry (ESI-MS), their chemical structures were identified as 5-[(2-acetyl-2,3-dihydro-1H-indazol-1-yl)carbonyl]-4,5-dihydro-3H-furan-2-one (C14H14N2O4) and stachyose. Conclusions: Two active antioxidant compounds were purified from the seed extract of D. lablab L. seed extract and the structures of these compounds were identified as C14H14O4N2 and stachyose.

Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

  • Son, In Suk;Lee, Jeong Soon;Lee, Ju Yeon;Kwon, Chong Suk
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.2
    • /
    • pp.82-88
    • /
    • 2014
  • Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators.

Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium

  • Yoon, Bo-Young;Yeom, Ji-Hyun;Kim, Jin-Sik;Um, Si-Hyeon;Jo, Inseong;Lee, Kangseok;Kim, Yong-Hak;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.100-108
    • /
    • 2014
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu,Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.