• Title/Summary/Keyword: Cu(Ⅰ)

Search Result 14,159, Processing Time 0.038 seconds

Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid (Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합)

  • Hong, Junsung;Lee, Jung-Hoon;Oh, You-Na;Cho, Kwang-Jun;Riu, Doh-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

Effects of Supplementary Copper-Chelate on the Performance and Cholesterol Level in Plasma and Breast Muscle of Broiler Chickens

  • Paik, I.K.;Seo, S.H.;Um, J.S.;Chang, M.B.;Lee, B.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.794-798
    • /
    • 1999
  • An experiment was conducted to determine the effects of supernormal level of copper (Cu) from different supplementary sources on the performance, cholesterol level in plasma and breast muscle, and accumulation of fat and Cu in broilers. In a 5 wk feeding trial, two hundred forty hatched male broiler chickens were assigned to four dietary treatments: control diet containing 10 mg/kg supplementary Cu, control diet plus 250 mg/kg Cu from $CuSO_4$ ($CuSO_4-250$), control diet plus 125 mg/kg Cu from Cu-methionine chelate (Cu-Met-125), and control diet plus 250 mg/kg Cu from Cu-methionine chelate (Cu-Met-250). Weight gain in Cu-Met-125 treatment and Cu-Met-250 treatment were not different, but they were significantly (p<0.05) greater than that in $CuSO_4-250$ treatment. Plasma total cholesterol and reduced glutathione (GSH) in blood were significantly reduced by supplementation of $CuSO_4-250$, but were not significantly affected by Cu-Met supplementations. Plasma HDL cholesterol, plasma triglycerides and breast muscle cholesterol were not significantly affected by Cu supplementation. $CuSO_4-250$ improved metabolizability of crude fat, which resulted in low abdominal fat pad weight. Cu from Cu-Met was better absorbed and accumulated more in the breast muscle and lesser in the liver compared with Cu from $CuSO_4$.

Study on the Thermal Properties of the Electroless Copper Interconnect in Integrated Circuits (집적회로용 무전해도금 Cu배선재료의 열적 특성에 관한 연구)

  • 김정식;이은주
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • In this study, the thermal property and adhesion of the electroless-deposited Cu thin film were investigated. The multilayered structure of Cu /TaN /Si was fabricated by electroless-depositing the Cu thin layer on the TaN diffusion barrier which was deposited by MOCVD on the Si substrate. The thermal stability was investigated by measuring the resistivity as post-annealing temperature for the multilayered Cu /TaN /Si specimen which was annealed at atmospheres of $H_2$and Ar gases, respectively. The adhesion strength of Cu films was evaluated by the scratch test. The adhesion of the electroless-deposited Cu film was compared with other deposition methods of thermal evaporation and sputtering. The scratch test showed that the adhesion of electroless plated Cu film on TaN was better than that of sputtered Cu film and evaporated Cu film.

  • PDF

Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump (Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Growth kinetics of intermetallic compound (IMC) at various interface in Cu pillar bump during aging have been studied by thermal aging at 120, 150 and $165^{\circ}C$ for 300h. In result, $Cu_6Sn_5\;and\;Cu_3Sn$ were observed in the Cu pillar/SnPb interface and IMC growth followed parabolic law with increasing aging temperatures and time. Also, growth kinetics of IMC layer was faster for higher aging temperature with time. Kirkendall void formed at interface between Cu pillar and $Cu_3Sn$ as well as within the $Cu_3Sn$ layer and propagated with increasing time. $(Cu,Ni)_6Sn_5$ formed at interface between SnPb and Ni(P) after reflow and thickness change of $(Cu,Ni)_6Sn_5$ didn't observe with aging time. The apparent activation energies for growth of total $(Cu_6Sn_5+Cu_3Sn),\;Cu_6Sn_5\;and\;Cu_3Sn$ intermetallics from measurement of the IMC thickness with thermal aging temperature and time were 1.53, 1.84 and 0.81 eV, respectively.

  • PDF

Flip Chip Process by Using the Cu-Sn-Cu Sandwich Joint Structure of the Cu Pillar Bumps (Cu pillar 범프의 Cu-Sn-Cu 샌드위치 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Compared to the flip-chip process using solder bumps, Cu pillar bump technology can accomplish much finer pitch without compromising stand-off height. Flip-chip process with Cu pillar bumps can also be utilized in radio-frequency packages where large gap between a chip and a substrate as well as fine pitch interconnection is required. In this study, Cu pillars with and without Sn caps were electrodeposited and flip-chip-bonded together to form the Cu-Sn-Cu sandwiched joints. Contact resistances and die shear forces of the Cu-Sn-Cu sandwiched joints were evaluated with variation of the height of the Sn cap electrodeposited on the Cu pillar bump. The Cu-Sn-Cu sandwiched joints, formed with Cu pillar bumps of $25-{\mu}m$ diameter and $20-{\mu}m$ height, exhibited the gap distance of $44{\mu}m$ between the chip and the substrate and the average contact resistance of $14\;m{\Omega}$/bump without depending on the Sn cap height between 10 to $25\;{\mu}m$.

  • PDF

The Direct Bonding of Copper to Alumina by $Cu-Cu_2$O Eutectic Reaction (Cu-C$u_2$O의 공정반응에 의한 구리와 알루미나의 직접접합)

  • Yu, Hwan-Seong;Lee, Im-Yeol
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.241-247
    • /
    • 1992
  • The direct bonding of Cu to $Al_2O_3$, employing the $Cu-Cu_2$O eutectic skin melt, is investigated. The bonding force and interface structure of samples prepared by oxidation at $1015^{\circ}C$ in $1.5{\times}10^{-1}$torr followed by bonding at 107$5^{\circ}C$ under $10_{-3}$ torr vacuum have been studied using peeling test, SEM, EDS and XRD. It has been found that the optimal strength is obtained for 3 minutes of oxidation while the adhesion force is decreased with oxidation shorter or longer than 3 minutes. The rupture occured at alumina-eutectic interface. Fractured surface of $Al_2O_3$covered with $Cu_2$O nodules pulled out of the Cu indicates that bonding strength is governed by $Cu-Cu_2$O interface and not by $Cu_2$O-A$l_2O_3$interface. The bonding force is slightly increased with bonding time and the reaction phases of CuA$l_2O_4$and $CuAlO_2$are formed at interface during the bonding.

  • PDF

Electrical and Mechanical Properties of Cu(Mg) Film for ULSI Interconnect (고집적 반도체 배선용 Cu(Mg) 박막의 전기적, 기계적 특성 평가)

  • 안재수;안정욱;주영창;이제훈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.89-98
    • /
    • 2003
  • The electrical and mechanical properties of sputtered Cu(Mg) films are investigated for highly reliable interconnects. The roughness, adhesion, hardness and resistance to thermal stress of Cu(Mg) film annealed in vacuum at $400^{\circ}C$ for 30min were improved than those of pure Cu film. Moreover, the flat band voltage(V$_{F}$ ) shift in the Capacitance-Voltage(C-V) curve upon bias temperature stressing(BTS) was not observed and leakage currents of Cu(Mg) into $SiO_2$ were three times less than those of pure Cu. Because Mg was easy to react with oxide than Cu and Si after annealing, the Mg Oxide which formed at surface and interface served as a passivation layer as well.

  • PDF

The effect of Cu and Sb on the microstructure and mechanical properties in Sn-Sb-Cu-Ni-Cd whitemetal (Sn-Sb-Cu-Ni-Cd whitemetal에서 Cu와 Sb가 미세조직과 기계적 특성에 미치는 영향)

  • Kim, Jin-Kon;Kang, Dae-Sung;Kwon, Young-Jun;Kim, Ki-Sung;Sang, Hie-Sun;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • The effects of Cu and Sb on the microstructure and mechanical properties of Sn-Sb-Cu-Ni-Cd whitemetal were investigated. Any compound phase was not observed in the whitemetal with 0.05 wt% Cu, while as the Cu content was increased, star- or needle-like $Cu_6Sn_5$ phases were found. The tensile strength gradually increased with Cu up to 5 % and then remained almost constant with Cu content above 5 %, while the hardness continuously increased with Cu content because of the increased hard $Cu_6Sn_5$ phases. As the Sb content increased, SbSn cuboids were present as well as $Cu_6Sn_5$. The tensile steength and hardness continuously increased and the elongation decreased with Sb content.

Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics (플립칩 공정시 반응생성물이 계면반응 및 접합특성에 미치는 영향)

  • Ha, Jun-Seok;Jung, Jae-Pil;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • We studied interfacial reaction and bonding characteristics of a flip chip bonding with the viewpoint of formation behavior of intermetallic compounds. For this purpose, Sn-0.7Cu and Sn-3Cu solders were reflowed on the Al/Cu and Al/Ni UBMs. When Sn-0.7Cu was reflowed on the Al/Cu UBM, no intermetallic compounds were formed at the solder/UBM interface. The $Cu_6Sn_5$ intermetallic compounds formed by reflowing Sn-3Cu solder on the Al/Cu UBM were spalled from the interface, resulting in delamination of the solder/UBM interface. On the other hand, the $(Cu,Ni)_6Sn_5$ intermetallic compounds were formed by reflowing of Sn-0.7Cu and Sn-3Cu on the Al/Ni UBM and the interfacial bonding between the Sn-Cu solders and the Al/Ni UBM was kept stable.

Effects of dietary copper sources and levels on growth performance, copper digestibility, fecal and serum mineral characteristics in growing pigs

  • Byeonghyeon, Kim;Jin Young, Jeong;Seol Hwa, Park;Hyunjung, Jung;Minji, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.885-896
    • /
    • 2022
  • This experiment was conducted to investigate the effects of three different copper (Cu) sources (one inorganic and two organics) and levels (0, 50, and 100 mg/kg) on the growth performance, Cu digestibility, fecal mineral excretion, serum mineral concentration, jejunal morphology, and serum biochemical profile of growing pigs. A total of 42 male, growing pigs (31.08 ± 1.82 kg) were randomly assigned to seven treatments consisting of one negative control (0 mg/kg of added Cu level) and treatments with copper sulfate (CuSO4), Cu-amino acid complex (CuAA), and Cu-hydroxy-4-methylthio butanoate chelate complex (CuHMB) at 50 and 100 mg/kg each for 28 d. Pigs fed 50 or 100 mg/kg of Cu showed improved (p < 0.05) average daily gain and feed intake. Although Cu excretion decreased (p < 0.01) in pigs fed 100 mg/kg of organic Cu sources compared to those fed CuSO4, there was no difference between the Cu sources in pigs fed 50 mg/kg. However, the apparent total tract digestibility of Cu increased (p < 0.01) in pigs fed organic Cu sources compared with that in pigs fed CuSO4. The addition of CuHMB increased (p < 0.01) serum phosphorus and sulfur concentrations; however, there were no effects of source and level on jejunal morphology and serum biochemical profile. These results suggest that the inclusion (50 mg/kg) of organic Cu sources (CuAA and CuHMB) in the growing pig diet could be beneficial for growth performance and Cu availability and may reduce environmental pollution.