• Title/Summary/Keyword: Crystallization rate

Search Result 314, Processing Time 0.027 seconds

SEPARATION OF STRONTIUM AND CESIUM FROM TERNARY AND QUATERNARY LITHIUM CHLORIDE-POTASSIUM CHLORIDE SALTS VIA MELT CRYSTALLIZATION

  • WILLIAMS, AMMON N.;PACK, MICHAEL;PHONGIKAROON, SUPATHORN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.867-874
    • /
    • 2015
  • Separation of cesium chloride (CsCl) and strontium chloride ($SrCl_2$) from the lithium chloride-potassium chloride (LiCl-KCl) salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary $SrCl_2-LiCl-KCl$ salt was explored at similar growth rates (1.8-5 mm/h) and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, $SrCl_2$ separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

Thermal Properties of Copolyetherester/silica Nanocomposites

  • Baik, Doo-Hyun;Kim, Hae-Young;Kwon, Sun-Jin;Kwon, Myung-Hyun;Lee, Han-Sup;Youk, Ji-Ho;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.367-371
    • /
    • 2006
  • Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.

Studies on the Production of Guanosine-5'-monophosphate by Microorganism. (Part III) Studies on the Crystallization of 5'-GMP. 2Na. (미생물에 의한 5'-GMP의 생산에 관한 연구 (제3보) 5'-GMP의 결정화에 관한 연구)

  • 이계하;문화식;이희인;배종찬;류주현
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1981
  • Crystallization conditions of disodium guanosine-5'-monophosphate (5'-GMP. 2Na) were studied. The solubility of 5'-GMP. 2Na was decreased by addition of methanol and the optimum condition was as follows. The crystallization was carried out at 45$^{\circ}C$ with agitation rate of 160-200 rpm., which is Reynold's No. of 25, 000-32, 000. When concentration of methanol was 7.5%~10.0%, the 5'-GMP. 2Na was easily crystallized by addition of crystal seed.

  • PDF

Synthesis of kaolinite by hydrothermal reaction using pseudoboehmite as starting material (Pseudoboehmite를 출발물질로한 kaolinite의 수열 합성)

  • 고태석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Kaolinite was synthesized through th acid treatment of mixture which consisted of psudoboehmite and colloidal silica in hydrothermal reaction at $213^{\circ}C$ under autogeneous vapor pressure. Crystallization process was characterized by X-ray powder diffraction pattern, IR spectra and Hinckley index was calculated. The synthesis in acidic solution promotes the dissolution of the starting materials and leads to crystallization of kaolinite. The rate of crystallization to kaolinite and stacking defect were found to e affected by kind of anion, acidity and starting materials.

  • PDF

Solid-Phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition

  • Lee, Jung-Keun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • The effect of deposition paratmeters on the solid-phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition has been investigated by x-ray diffraction. The amorphous silicon films were prepared on Si(100) wafers using SiH4 gas with and without H2 dilution at the substrate temperatures between 12$^{\circ}C$ and 38$0^{\circ}C$. The R. F. powers and the deposition pressures were also varied. After crystallizing at $600^{\circ}C$ for 24h, the films exhibited (111), (220), and (311) x-ray diffraction peaks. The (111) peak intensity increased as the substrate temperature decreased, and the H dilution suppressed the crystallization. Increasing R.F. powers within the limits of etching level and increasing deposition pressures also have enhanced the peak intensity. The peak intensity was closely related to the deposition rate, which may be an indirect indicator of structural disorder in amorphous silicon films. Our results are consistent with the fact that an increase of the structural disorder I amorphous silicon films enhances the grain size in the crystallized films.

The Anti-Bacterial Properties of LTP Crystallized Glass by Ag Ion Exchange (LTP계 결정화유리의 Ag이온교환에 따른 항균특성)

  • 권면주;윤영진;강원호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • Antibacterial glass ceramics composed of $5Li_2O{\cdot}36CaO{\cdot}20TiO_2{\cdot}27P_2O_5$ were Prepared. After ion exchange in the $AgNO_3$solution, crystallization phases were $AgTi_2(PO_4)_3$, $LiTi_2(PO_4)_3$ and $Ca_3(PO_4)_2$. In case of ion exchange, the crystallization phases started to be transformed from $LiTi_2(PO_4)_3$ to $AgTi_2(PO_4)_3$in 0.5 mole $AgNO_3$ solution and the transformation was almost completed in 1.0 mole. ion exchange rate of glass-ceramics powder, considering ion exchange time, was more fast than that of bulk. The bacteriostatic effect of the glass-ceramics on Staphyloroccus aureus and Salmonella typhi bacteria was more excellent than that of glass when the crystallization phase was transformed from LTP to AgTP.

  • PDF

The Formation and Crystallization of Amorphous Ti50Cu50Ni20Al10 Powder Prepared by High-Energy Ball Milling

  • Viet, Nguyen Hoang;Kim, Jin-Chun;Kim, Ji-Soon;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Amorphization and crystallization behaviors of $Ti_{50}Cu_{50}Ni_{20}Al_{10}$ powders during high-energy ball milling and subsequent heat treatment were studied. Full amorphization obtained after milling for 30 h was confirmed by X-ray diffraction and transmission electron microscope. The morphology of powders prepared using different milling times was observed by field-emission scanning electron microscope. The powders developed a fine, layered, homogeneous structure with prolonged milling. The crystallization behavior showed that the glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 691,771 and 80 K, respectively. The isothermal transformation kinetics was analyzed by the John-Mehn-Avrami equation. The Avrami exponent was close to 2.5, which corresponds to the transformation process with a diffusion-controlled type at nearly constant nucleation rate. The activation energy of crystallization for the alloy in the isothermal annealing process calculated using an Arrhenius plot was 345 kJ/mol.

Structural Changes in Isothermal Crystallization Processes of Synthetic Polymers Studied by Time-Resolved Measurements of Synchrotron-Sourced X-Ray Scatterings and Vibrational Spectra

  • Tashiro, Kohji;Hama, Hisakatsu
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The structural changes occurring in the isothermal crystallization processes of polyethylene (PE), poly-oxymethylene (POM), and vinylidene fluoridetrifluoroethylene (VDFTrFE) copolymer have been reviewed on the basis of our recent experimental data collected by the time-resolved measurements of synchrotron-sourced wide-angle (WAXS) and small-angle X-ray scatterings (SAXS) and infrared spectra. The temperature jump from the melt to a crystallization temperature could be measured at a cooling rate of 600-1,000 $^{\circ}C$/min, during which we collected the WAXS, SAXS, and infrared spectral data successfully at time intervals of ca. 10 sec. In the case of PE, the infrared spectral data clarified the generation of chain segments of partially disordered trans conformations immediately after the jump. These segments then became transformed into more-regular all-trans-zigzag forms, followed by the formation of an orthorhombic crystal lattice. At this stage, the generation of a stacked lamella structure having an 800-${\AA}$-long period was detected in the SAXS data. This structure was found to transfer successively to a more densely packed lamella structure having a 400-${\AA}$-long period as a result of the secondary crystallization of the amorphous region in-between the original lamellae. As for POM, the formation process of a stacked lamella structure was essentially the same as that mentioned above for PE, as evidenced from the analysis of SAXS and WAXS data. The observation of morphology-sensitive infrared bands revealed the evolution of fully extended helical chains after the generation of lamella having folded chain structures. We speculate that these extended chains exist as taut tie chains passing continuously through the neighboring lamellae. In the isothermal crystallization of VDFTrFE copolymer from the melt, a paraelectric high-temperature phase was detected at first and then it transferred into the ferroelectric low-temperature phase at a later stage. By analyzing the reflection profile of the WAXS data, the structural ordering in the high-temperature phase and the ferroelectric phase transition to the low-temperature phase of the multi-domain structure were traced successfully.

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites

  • Shin, Young-Hak;Lee, Wan-Duk;Im, Seung-Soon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.662-670
    • /
    • 2007
  • The crystallization behavior and fine structure of poly(ethylene terephthalate) (PET)/A-zeolite nanocomposites were assessed via differential scanning calorimetry (DSC) and time-resolved small-angle X-ray scattering (TR-SAXS). The Avrami exponent increased from 3.5 to approximately 4.5 with increasing A-zeolite contents, thereby indicating a change in crystal growth formation. The rate constant, k, evidenced an increasing trend with increases in A-zeolite contents. The SAXS data revealed morphological changes occurring during isothermal crystallization. As the zeolite content increased, the long period and amorphous region size also increased. It has been suggested that, since PET molecules passed through the zeolite pores, some of them are rejected into the amorphous region, thereby resulting in increased amorphous region size and increased long period, respectively. In addition, as PET chains piercing into A-zeolite pores cannot precipitate perfect crystal folding, imperfect crystals begin to melt at an earlier temperature, as was revealed by the SAXS profiles obtained during heating. However, the spherulite size was reduced with increasing nanofiller content, because impingement between adjacent spherulites in the nanocomposite occurs earlier than that of homo PET, due to the increase in nucleating sites.