• Title/Summary/Keyword: Crystallinity value

Search Result 184, Processing Time 0.019 seconds

The effects of TiO2 interlayer phase transition on structural and electrical properties of PLZT Thin Films (TiO2 Interlayer의 상변화에 따른 PLZT 박막의 구조 및 전기적 특성)

  • Lee, Chul-Su;Yoon, Ji-Eon;Hwang, Dong-Hyun;Cha, Won-Hyo;Sona, Young-Gook
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.446-452
    • /
    • 2007
  • [ $(Pb_{1.1},La_{0.08})(Zr_{0.65}.Ti_{0.35})O_3$ ] thin films on the $Pt/Ti/SiO_2/Si$, $TiO_2(interlayer)/Pt/Ti/SiO_2/Si$ substrate were fabricated by the R.F. magnetron-sputtering method and considered their characteristics depending on $TiO_2$ interlayer. Changing the deposition conditions of $TiO_2$ interlayer, we obtained $TiO_2$ anatase single phase and rutile single phase. PLZT was deposited on these substrates and analyzed by x-ray diffraction(XRD) for there crystallinity and orientation. To investigate $PLZT-TiO_2$, $TiO_2-Pt$ interface, glow discharge spectrometer(GDS) analysis was carried out and we performed electrical measurements for dielectric properties of PLZT thin films. The PLZT thin film on $TiO_2$ anatase interlayer was found to have (110)-preferred orientation and 12.6 ${\mu}C/cm^2$ remaining polarization value.

Characteristics in the Deposition of Mn-Zn Ferrite Thin Films by Ion Beam Sputtering Using a Single Ion Source (단일 이온원을 사용하는 이온빔 스퍼터링법에 의한 Mn-Zn 페라이트 박막의 증착 기구)

  • Jo, Hae-Seok;Ha, Sang-Gi;Lee, Dae-Hyeong;Hong, Seok-Gyeong;Yang, Gi-Deok;Kim, Hyeong-Jun;Kim, Gyeong-Yong;Yu, Byeong-Du
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.239-245
    • /
    • 1995
  • Mn-Zn ferrite thin films were deposited on $SiO_2(1000 \AA)/Si(100)$ by ion beam sputtering using a single ion source. A mosaic target consisting of a single crystal(ll0) Mn-Zn ferrite with a Fe metal strip on it was used. As-deposited films without oxygen gas flow have a wiistite structure due to oxygen deficiencies, which originated from the extra metal atoms sputtered from the metal strips during deposition. The as-deposited films with oxygen gas flow, however, have a spinel structure with (111) preferred orientation. The crystallization of thin films was maximized at the ion beam extraction voltage of 2.lkV, at which the deposited films are bombarded appropriately by the energetic secondary ions reflected from the target. As the extraction voltage increased or decreased from the optimum value, the crystallinity of thin films becomes poor owing to a weak and severe bombardment of the secondary ions, respectively. Crystallization due to the bombardment of the secondary ions was also maximized at the beam incidence angle of $55^{\circ}$. The as-deposited ferrite thin films with a spinel structure showed ferrimagnetism and had an in-plane magnetization easy axis.

  • PDF

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

Physical Properties of Yukwa Base According to the Extrusion Processing Conditions (I): Manufacturing of Yukwa Base with Combination of Glutinous Rice Flour and Rice Flour (Extrusion 제조조건에 따른 유과바탕의 물리적 품질특성(I): 찹쌀가루와 쌀가루 배합에 따른 유과바탕의 제조)

  • Eun, Jong-Bong;Hsieh, Fu-hung;Choi, Ok-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1760-1766
    • /
    • 2009
  • Physical properties of Yukwa base extruded with glutinous rice flour, rice flour, defatted soy flour, and salt using an twin-screw extruder were investigated. The ingredients were extruded at various moisture contents (16-18%), screw speeds (300 & 400 rpm) at 43.4 kg/hr feed rate. Length and specific volume of Yukwa base increased with decreasing moisture contents. Hunter's color L* values of Yukwa base was higher whereas $a^*\;and\;b^*$ values were lower with increasing moisture content. Water absorption index of Yukwa base increased with increasing moisture contents. X-ray diffraction of Yukwa base showed B type moisture content of 16% and 17% while it showed A type moisture content of 18%. Degree of crystallinity and breaking strength of Yukwa base were the lowest in the moisture content of 16% while the lowest value for hardness was found in the moisture content of 16% and of 17% with screw speed 400 rpm for all samples. In the microstructure of cross section of Yukwa base, air cell size was larger and cell wall was thicker as moisture content increased. The sensory evaluation of the Yukwa base showed that color and flavor were not significantly different among samples, while taste, appearance, mouth feel, and overall preference were higher as moisture contents decreased.

Mechanical Properties of Ta/TaN Multilayer (Ta/TaN 복합 다층 피막의 기계적 특성)

  • Gang, Yeong-Gwon;Lee, Jong-Mu;Choe, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.837-842
    • /
    • 1999
  • The Ta/TaN multilayer structure with repeating layers of a poly-crystalline Ta layer of high ductility and a TaN layer of high hardness is expected to exhibit toughness. This paper reports the results on the hardness and the adhesion strength of Ta/TaN multilayers and compositional gradient Ta/TaN layers deposited on the high speed steel substrate by reactive sputtering as a function of annealing temperature. The TaN film deposited with the $N_2$/Ar ratio of 0.4 in the reactive sputtering process exhibits the highest crystallinity, and the highest hardness and the results of scratch test of the Ta/TaN multilayers. The hardness and adhesion strength of the Ta/TaN multilayers becomes deteriorated with increasing the annealing temperature in the heat treatment right after depositing the layers. Therefore, post-annealing treatments are not desirable in the case of the Ta/TaN multilayers from the standpoint of mechanical properties. Also the hardness of Ta/TaN multilayers increases with decreasing the compositional modulation wavelength, but the adhesion property of the layers is nearly independent of the wavelength. On the other hand, the compositional gradient Ta/TaN film exhibits the highest hardness and the value of scratch test for the post-annealing temperatures of 20$0^{\circ}C$ and 40$0^{\circ}C$, respectively. This tendency of the compositional gradient Ta/TaN films differs from that of the Ta/TaN multilayers.

  • PDF

Characteristics of the SrBi2Nb2O9 Thin Films Deposited by RF Magnetron Sputtering with Controlling of Bi Contents (RF마그네트론 스퍼터링 법에 의해 증착된 SrBi2Nb2O9 박막의 Bi 량의 조절에 따른 특성분석)

  • Lee, Jong-Han;Choi, Hoon-Sang;Sung, Hyun-Ju;Lim, Geun-Sik;Kwon, Young-Suk;Choi, In-Hoon;Son, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.962-966
    • /
    • 2002
  • The $SrBi_2$$Nb_2$$O_{9}$ (SBN) thin films were deposited with $SrNb_2$$O_{6}$ / (SNO) and $Bi_2$$O_3$ targets by co-sputtering method. For the growth of SBN thin films, we adopted the various power ratios of two targets; the power ratios of the SNO target to $Bi_2$$O_3$ target were 100 W : 20 W, 100 W : 25 W, and 100 W : 30 W during sputtering the SBN films. We found that the electrical properties of SBN films were greatly dependent on Bi content in films. The $Bi_2$Pt and $Bi_2$$O_3$ phase as second phases occurred at the films with excess Bi content greater than 2.4, resulting in poor ferroelectric properties. The best growth condition of the SBN films was obtained at the power ratio of 100 W : 25 W for the two targets. At this condition, the crystallinity and electrical properties of the films were improved at even low annealing temperature as $700^{\circ}C$ for 1h in oxygen ambient and the Sr, Bi and Nb component in the SBN films were about 0.9, 2.4, and 1.8 respectively. From the P-E and I-V curves for the specimen, the remnant polarization value ($2P_{r}$) of the SBN films was obtained about 6 $\mu$C/c $m^2$ at 250 kV/cm and the leakage current density of this thin film was $2.45$\times$10^{-7}$ $A/cm^2$ at an applied voltage of 3 V.V.

Rare Metal Occurrences within the Anorthosite in the Hadong-Sanchong area, Kyungnam Province, Korea (하동-산청지역 회장암에 배태된 희유금속자원에 관한 연구)

  • Kim, Won-Sa;Jeong, Ji-Gon;Lee, Gang-Ho;Watkinson, D.H.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.14-21
    • /
    • 1992
  • Allanite crystals rich in rare-earth elements(REE) occur in soil developed on top of anorthositic rocks in the Jungsu-ri area of Okjong-myun, Hadong-run, where large Ti orebodies are embedded in the bed rock. In this study allanite is investigated mainly by transmitted light microscopy, electron microprobe analysis, atomic absoption spectrophotometry, X-ray diffraction, infrared spectrocopy. In addition, its specific gravity and micro=indentation hardness value are measured. Allanite occurs with max. dimension of $3cm{\times}6cm$ and coexists with quartz, epidote, zircon, biotite and muscovite. It shows nearly nonmetamict crystallinity, although ${\alpha}$-particles bombardment from the disintegration of the radioactive element Th is detected by an autoradiography. The allanite is particularly enriched in REE(19.88-23.99 wt.%), but is deficient in CaO(8.35-10.29wt.%). Genesis of the allanite in this area is not understood yet. It is, however, assumed to have been formed from magmatic fluid rich in REE and Ti, based on the facts that it ocexists with zircon and that it has high $TiO_2$(0.89-1.13 wt.%) whose concentration is significant in the country rocks.

  • PDF

Copper Film Growth by Chemical Vapor Deposition: Influence of the Seeding Layer (ICB seeding에 의한 CVD Cu 박막의 증착 및 특성 분석)

  • Yoon, Kyoung-Ryul;Choi, Doo-Jin;Kim, Seok;Kim, Ki-Hwan;Koh, Seok-Keun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.723-732
    • /
    • 1996
  • Cu films were deposited by chemical wapor deposition on the as-received substrates (TiN/Si) and three kinds of Cu-seeded substrates (Cu/TiN/Si) which had seeding layer in the thick ness of 5 ${\AA}$ and 130 ${\AA}$ coated by ICB(Ionized Cluster Beam) method. The effect of Cu seeding layers on the growth rate, crystallinity, grain size uniformity and film adhesion strength of final CVD-Cu films was investigated by scanning eletron microscopy(SEM), X-ray diffractometry and scratch test. The growth rate was found to incresase somewhat in the case of ICB-seeding. The XRD patterns of the Cu films on the as-received substrate and ICB Cu-seeded substrates exhibited the diffraction peaks corresponding to FCC phase, but the peak intensity ratio($I_{111}/I_{200}$) of Cu films deposited on the ICB Cu-seeded substrates increased compared with that of Cu films on the as-received substrate. The resistivity of final Cu film on 40 ${\AA}$ seeded substrate was observed as the lowest value, 2.42 $\mu\Omega\cdot$cm compared with other Cu films. In adhesion test, as the seeding thickness increased from zero to 130 ${\AA}$, the adhesion strength increased from 21N to 27N.

  • PDF

Study of Molecular and Crystalline Structure and Physicochemical Properties of Rice Starch with Varying Amylose Content (아밀로오스 함량이 다른 쌀 전분의 분자 및 결정 구조와 이화학적 특성)

  • You, Su-Yeon;Lee, Eun-Jung;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.682-688
    • /
    • 2014
  • The in vitro digestibility and molecular and crystalline structures of rice starches (Seilmi, Dasan1, and Segoami) with differing amylose content were investigated. Segoami had the highest amylose content (30.9%), whereas Dasan1 had the lowest amylose content (21.2%). The molecular weight ($\bar{M}_w$) of amylose and amylopectin in Segoami was much lower than that of the other two rice starches. Segoami had the highest proportion (8.7%) of amylopectin short branch chains (DP 6-12) and the lowest proportion of B1 chains (DP 13-24). The relative crystallinity, intensity ratio of $1047-1022cm^{-1}$ (1047/1022) and gelatinization enthalpy followed the order: Segoami>Seilmi~Dasan1. Segoami showed substantially low pasting viscosity. Rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents showed the highest value in Seilmi, Dasan1, and Segoami, respectively. The expected glycemic index (eGI) of Segoami was lower than that of the other two rice starches. Overall results suggested that the digestibility of rice starch could be highly influenced by their molecular and crystalline structure.

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.