• Title/Summary/Keyword: Crystallinity value

Search Result 184, Processing Time 0.026 seconds

Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films. (SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Hydroxyapatite prepared from eggshell and mulberry leaf extract by precipitation method

  • Wu, Shih-Ching;Hsu, Hsueh-Chuan;Hsu, Shih-Kuang;Liu, Mei-Yi;Ho, Wen-Fu
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.4 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • Eggshell is a waste material after the usage of egg. In this work, biowaste chicken eggshells were used for preparing carbonated hydroxyapatite (HA) nanoparticles of high purity through aqueous precipitation method at room temperature. The eggshell-derived HA will be a cost-effective bioceramics for biomedical applications and an effective material-recycling technology. Additionally, mulberry leaf extract was used as a template to regulate the morphology, size and crystallinity of HA, and the effects of pH value were also examined. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) was used to determine the size, shape and morphology of HA. The results indicate that only one phase of HA were synthesized in the both absence and presence of mulberry leaf extract at pH of 7 and above, while DCPD or DCPA/DCPD phase was observed at pH 4 condition. The crystallite sizes of the HA samples obviously decreased when adding mulberry leaf extract as a template, while they decreased gradually as the solution pH levels increased. With increasing pH level from 7 to 14, the rod-like HA nanoparticles gradually changed to spherical shape at pH 14. Note that, the obtained product is Mg and Sr containing A- and B-type carbonate HA at alkaline pH and it can be a potential material for biomedical applications.

Antioxidant Activities and Quality Characteristics of Noodle with Added Apios (Apios americana Medikus) Cultivated in Korea (국내산 아피오스 첨가 국수의 항산화 활성 및 품질 특성)

  • Na, Seyeon;Sim, Ki Hyeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.844-857
    • /
    • 2018
  • This study evaluates antioxidant activity and quality characteristics of noodle adding domestic apiose (Apios americana Medikus) powder at the ratios of 0, 5, 10, 15, and 20%. The moisture content increased as more apiose was added while the pH decreased as more apiose was added. On the other hand, water absorption ratio and turbidity increased as more apiose was added. The L value decreased while the a value increased as more apiose was added. In texture, the hardness increased while cohesiveness decreased as more apiose was added. As a result, the overall preferences, the appearance, aroma, taste, and texture were the best when 15% apiose was added. In quantitative descriptive analysis (QDA), it turned out that brown color, bitter taste, delicate flavor, hardness, adhesiveness and chewiness increased as more apiose was added. However, crystallinity, spreadability, flour flavor, springiness decreased as more apiose was added. In principal component analysis (PCA), it was found out that when more than 15% apiose was added to the noodles. Antioxidant activity increased all for total phenolic, flavonoid contents and DPPH radical scavenging activity as more apiose was added. Collectively, it was noted that the preference, antioxidant activity and quality are the best when 15% apiose was added to noodles.

Kinetics of N2O Decomposition over Fe-TNU-9 Zeolite (Fe-TNU-9 제올라이트 상에서 아산화질소의 분해반응 속도론)

  • Park, Jung-Hyun;Jeon, Seong-Hee;Van Khoa, Nguyen;Shin, Chae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • Iron-containing TNU-9 zeolites were prepared by aqueous ion exchange in the range of Fe contents 0.6~3.3 wt%. Direct decomposition of $N_2O$ was performed varying $N_2O$ concentrations and reaction temperatures. Fe-TNU-9 zeolites used were characterized using XRD, $N_2$ sorption, SEM/EDX. A 2.7 wt% Fe-TNU-9 zeolite showed high activities and above this contents of Fe the effect of catalytic activity was little dominated. Fe-TNU-9 zeolites after ion exchange conserved their TNU-9 structure although the degree of crystallinity was decreased until ca. 60% in 3.1 wt% Fe-TNU-9 zeolite after ion exchange in 0.01 M Fe solution. The decrease in the degree of crystallinity could be correlated with the decrease of surface area and pore volume. The partial reaction order of $N_2O$ in the decomposition of $N_2O$ was dependent on the reaction temperature from 0.69 at $420^{\circ}C$ to 0.97 at $494^{\circ}C$. The activation energy of $N_2O$ was also dependent on the $N_2O$ concentration and its value is ranged to 34~43 kcal/mol.

Synthesis of Co3O4 Nanocubes as an Efficient Electrocatalysts for the Oxygen Evolution Reacitons (물 분해 과정에서 효율적인 촉매 특성을 보이는 Co3O4 nanocubes 합성)

  • Choi, Hyung Wook;Jeong, Dong In;Wu, Shengyuan;Kumar, Mohit;Kang, Bong Kyun;Yang, Woo Seok;Yoon, Dae Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • The high efficient water splitting system should involve the reduction of high overpotential value, which was enhanced by the electrocatalytic reaction efficiency of catalysts, during the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) reaction, respectively. Among them, transition metal-based compounds (oxides, sulfides, phosphides, and nitrides) are attracting attention as catalyst materials to replace noble metals that are currently commercially available. Herein, we synthesized optimal monodisperse Co3[Co(CN)6]2 PBAs by FESEM, and confirmed crystallinity by XRD and FT-IR, and thermal behavior of PBAs via TG-DTA. Also, we synthesized monodispersed Co3O4 nanocubes by calcination of Co3[Co(CN)6]2 PBAs, confirmed the crystallinity by XRD, and proceeded OER measurement. Finally, the synthesized Co3O4 nanocubes showed a low overpotential of 312 mV at a current density of 10 mA·cm-2 with a low Tafel plot (96.6 mV·dec-1).

BS/channeling studies on the heteroepitaxially grown $Y_2O_3$ films on Si substrates by UHV-ICB deposition (실리콘 기판 위에 UHV-ICB 증착법으로 적층 성장된 $Y_2O_3$박막의 BS/channeling 연구)

  • 김효배;조만호;황보상우;최성창;최원국;오정아;송종한;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The crystallinity and the structure of heteroepitaxially grown $Y_2O_3$ films on the silicon substrates deposited by Ultra High Vacuum Ionized Cluster Beam(UHV-ICB) were investigated by Back-scattering Spectroscopy(BS)/channeling. The channeling minimum values, $X_{min}$, of the $Y_2O_3$ films deposited by other methods were 0.8~0.95 up to the present, which indicates amorphous or highly polycrystalline nature of the $Y_2O_3$ films. On the contrary, the channeling minimum value of heteroepitaxially grown $Y_2O_3$ films on Si(100) and Si(111) deposited by UHV-ICB are 0.28 and 0.25 respectively. These results point out fairly good crystalline quality. It is also observed that the top region of $Y_2O_3$ films have less crystalline defects than the bottom region regardless of the crystal direction of the Si substrates. The axis of $Y_2O_3$<111> epitaxially grown on Si(111) is tilt by $0.1^{\circ}$ with respect to Si<111>. That of $Y_2O_3$<110> on Si(100) is parallel to the Si<001>. The $Y_2O_3$ film on Si(100) grew with single domain structure and that on Si(111) grew with double domain structure. From the result of oxygen resonance BS/channeling, the oxygen atoms in heteroepitaxially grown $Y_2O_3$ film on Si(111) substrate have the crystallinity, but that on Si(100) shows almost channeling amorphous state.

  • PDF

Effect of Sodium Stearoyl Lactylate on Complex Formation with Amylopectin and on Gelatinization and Retrogradation of Wheat Starch (Sodium Stearoyl Lactylate가 아밀로펙틴과의 결합물 형성 및 밀전분의 호화와 노화에 미치는 영향)

  • Jang, Jae-Kweon;Lee, Yun-Hyung;Lee, Seok-Hoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.500-506
    • /
    • 2000
  • The effects of sodium stearoyl lactylate(SSL) on the thermal properties of wheat starch and amylopectin, and the crystallinity properties of amylopectin were investigated using differential scanning calorimetry(DSC) and X-ray diffractometer. On the rescan(second heating), amylopectin produced the featureless thermogram shown at the second heating, and SSL alone melted at $40{\sim}55^{\circ}C$, while the mixture of amylopectin containing 8% water and SSL(10:1), presenting the evidence of AP-SSL complex, showed differentiate melting temperature(other crystallinity) from SSL alone. Also, the melting enthalpy of AP and SSL mixture by subsequent heating and cooling were continuously increased. Further, the mixtures of wheat starch: SSL (5:1, w/w) and amylopectin: SSL(5:1, w/w), indicated AP-SSL complex, showed the reversible melting peak at temperature range of $60{\sim}70^{\circ}C$ together with melting peak of SSL observed at temperature range of $40{\sim}55^{\circ}C$. AP-SSL complex in the X-ray diffraction, compared V-form of amylose-lipid complex, exhibited characteristic peaks($2{\theta}$, 5.57, 20.903, 23.227). The gelatinization enthalpy value of wheat starch in the presence of SSL, observed at temperature range of $50{\sim}70^{\circ}C$, was decreased at total water content 60%, whearas had no significant effect at total water content 40, 50%, and also, SSL increased melting enthalpy of amylose-lipid complex. The extent of AP and wheat starch retrogradation wasreduced significantly by SSL.

  • PDF

A Novel Analysis Of Amorphous/Crystalline Silicon Heterojunction Solar Cells Using Spectroscopic Ellipsometer (Spectroscopic Ellipsometer를 이용한 a-Si:H/c-Si 이종접합 태양전지 박막 분석)

  • Ji, Kwang-Sun;Eo, Young-Ju;Kim, Bum-Sung;Lee, Heon-Min;Lee, Don-Hee
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.68-73
    • /
    • 2008
  • It is very important that constitution of good hetero-junction interface with a high quality amorphous silicon thin films on very cleaned c-Si wafer for making high efficiency hetero-junction solar cells. For achieving the high efficiency solar cells, the inspection and management of c-Si wafer surface conditions are essential subjects. In this experiment, we analyzed the c-Si wafer surface very sensitively using Spectroscopic Ellipsometer for < ${\varepsilon}2$ > and u-PCD for effective carrier life time, so we accomplished < ${\varepsilon}2$ > value 43.02 at 4.25eV by optimizing the cleaning process which is representative of c-Si wafer surface conditions very well. We carried out that the deposition of high quality hydrogenated silicon amorphous thin films by RF-PECVD systems having high density and low crystallinity which are results of effective medium approximation modeling and fitting using spectroscopic ellipsometer. We reached the cell efficiency 12.67% and 14.30% on flat and textured CZ c-Si wafer each under AM1.5G irradiation, adopting the optimized cleaning and deposition conditions that we made. As a result, we confirmed that spectroscopic ellipsometry is very useful analyzing methode for hetero-junction solar cells which need to very thin and high quality multi layer structure.

  • PDF

The characteristics of $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films deposited on $RuO_2$ bottom electrodes ($RuO_2$하부전극상에 증착된 $(Ba_{0.5}Sr_{0.5})TiO_3$박막의 특성)

  • 백수현;박치선;마재평
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.407-410
    • /
    • 1998
  • The characteristics of $(Ba,Sr)TiO_3$[BST] thin films with the variation of $O_2/Ar$ ratio in sputtering gas deposited on $RuO_2$ bottom electrode were investigated. Dielectric constant of BST film increases from 135 to 190 with increasing oxygen partial pressure from 10 to 50, which is mainly due to the improved crystallinity of BST film. The instability of $RuO_2$ surface in $BST/RuO_2$ interface and the increase in the surface roughness of BST thin films with higher $O_2/Ar$ ratio appeared to play an important roles on the degradation of the leakage current characteristics of $Al/BST/RuO_2$ capacitor with various $O_2/Ar$ ratio in sputtering gas. As a consequence, the leakage current of BST thin film showed the lowest value of $1.9{\times}10^{-7}\; A/{\textrm}{cm}^2$ at $O_2/Ar{\approx}1/9$.

  • PDF

Preparation of CeO2 Nanoparticles using Flame Spray Pyrolysis (화염분무열분해법을 이용한 이산화세륨 나노분말 제조)

  • Kim, Sun Kyung;Park, Su-Ryeon;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.12 no.2
    • /
    • pp.37-42
    • /
    • 2016
  • $CeO_2$ nanoparticles were prepared by a flame spray pyrolysis from aqueous solution of cerium nitrate. The morphology, structure crystallinity and specific surface area of as-prepared nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Telle (BET). The $CeO_2$ nanoparticles about 5 nm in diameter showed a cubic fluorite structure and polyhedral morphology. The average particle size increased as the cerium nitrate concentration increased. UV absorption performance of the as-prepared nanoparticles was measured by UV-visible spectroscopy. UV absorption of $CeO_2$ nanoparticles was more effective than that of commercial $TiO_2$ nanoparticles. Effect of dopants such as Ti and Zn to $CeO_2$ nanoparticles on UV absorption properties was also investigated. In case of $Ti/CeO_2$, and $Zn/CeO_2$ nanoparticles, they showed a little higher UV absorption values compared with $CeO_2$ nanoparticles. The as-prepared nanoparticles can be promising materials with high UV absorption value.