• Title/Summary/Keyword: Crystalline rock

Search Result 97, Processing Time 0.024 seconds

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Microcrack Orientations in Tertiary Crystalline Tuff from Northeastern Gyeongsang Basin (경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 방향성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.115-135
    • /
    • 2009
  • We have studied general orientational characteristics of microcracks distributed in Tertiary crystalline tuff from the northeastern part of the Gyeongsang Basin. 108 sets of microcracks on horizontal surfaces of 6 rock samples from Heunghae-eup and Cheongha-myeon, Pohang-si areas were distinguished by image processing. Those microcrack sets show a distinct linear array in 38 images. Whole domain of the directional angle(${\theta}$)-frequency(N) chart for crystalline tuff can be divided into 20 domains in terms of the phases of the distribution of microcracks. From the related chart, microcrack sets show preferred orientation which are coincident with the direction of vertical common joints. Consequently, the potential for macroscopic vertical joints in a rock body can be inferred from the directional angle showing high frequency in each domain of the related chart. This joint pattern is nearly the same in Mesozoic granites from Seokmo-do, Gwanghwa-gun. From the rose diagram for orientations of microcrack in crystalline tuff, orientations of dominant sets of microcracks in terms of frequency orders reflect representative orientations of maximum principal stress acted on crystalline tuff. Meanwhile, orientations of microcracks in crystalline tuff were compared with those of open microcracks in Bulgugsa granites from the southwestern part of the Gyeongsang Basin, and vertical rift/grain planes from Mesozoic granite quarries in Korea. In regional distribution chart, the agreement of distribution pattern between above two types of microcrack sets and vertical planes suggests that microcrack systems developed in crystalline tuff probably occur regionally in Mesozoic granites in Korea.

A Study on the Stability of Deep Tunnels Considering Brittle Failure Characteristic (취성파괴특성을 고려한 심부터널의 안정성 평가기법 연구)

  • Park, Hyun-Ik;Park, Yeon-Jun;You, Kwang-Ho;Noh, Bong-Kun;Seo, Young-Ho;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.304-317
    • /
    • 2009
  • Most crystalline rocks have much higher compressive strength than tensile strength and show brittle failure. In-situ rock mass, strong enough in general sense, often fails in brittle manner when subjected to high stress exceeding strength in due of geometrically induced stress concentration or of high initial stress. Therefore, it is necessary to verify the brittle failure characteristics of rock and rock mass for proper stability assessment of underground structures excavated in great depths. In this study, damage controlled tests were conducted on biotite-granite and granitic gneiss, which are the two major crystalline rock types in Korea, to obtain the strain dependency characteristics of the cohesion and friction angle. A Cohesion-Weakening Friction-Strengthening (CWFS hereafter) model for each rock type was constructed and a series of compression tests were carried out numerically while varying confining pressures. The same tests were also conducted assuming the rock is Mohr-Coulomb material and results were compared.

Sorption of Np(IV) on MX-80 in Ca-Na-Cl Type Reference Water of Crystalline Rock

  • Nagasaki, Shinya
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The pH dependence of sorption distribution coefficient (Kd) of Np(IV) on MX-80 in Ca-Na-Cl type solution with the ionic strength of 0.3 M, which was similar to one of the reference groundwaters in crystalline rock, was experimentally investigated under the reducing conditions. The overall trend of Kd on MX-80 was independent of pH at 5 ≤ pH ≤ 10 but increased as pH increased at pH ≤ 5. The 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the experimentally measured pH dependence of Kd and the optimized surface complexation constants of Np(IV) sorption on MX-80 were estimated. The values of surface complexation constants in this work agreed relatively well with those in the Na-Ca-Cl solution previously evaluated, suggesting that compared to Na+, the competition of Ca2+ with Np(IV) for surface complexation on MX-80 was not much strong in Ca-Na-Cl solution. The sorption model well predicted the pH dependence of Kd values but slightly overestimated the sorption at the low pH region.

Estimation of Groundwater Level Fluctuation of the Crystalline site Using Time Series Analyses in South Korea (시계열분석을 이용한 결정질암 지역의 지하수위 변동 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Lee, Eunyong;Kim, Sujeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.179-192
    • /
    • 2013
  • This study is characterized the groundwater flow pattern near crystalline site of Yangbook-Myeon, Gyeong-ju City, South Korea. From the time series analyses, groundwater level could be classified into 4 types reflecting the hydrogeological characteristics and rainfall pattern. The type I (DB1-1, DB1-2) may be directly influenced by rainfall pattern. The type II (DB1-3, DB1-7, KB-1, KB-2, KB-3, KB-7, KB-14, KB-15) may be influenced by rainfall event as well as groundwater flow through water-conducting features. The type III (DB-5, DB1-6, DB2-2, KB-10, KB-11, KB-13) may be predominantly happens in the crystaline rock mass, groundwater in this type flows through the minor fracture networks rather than direct effect of rainfall event. The type IV (DB1-8, KB-9) may be influenced by irregular variation of the groundwater level due to anisotropy and heterogeneity of crystalline rock.

Comparison of Microscopic Method with X-ray Diffraction Analysis of Rock Minerals (주요암석(主要岩石) 광물(鑛物)에 대(對)한 현미경적분석(顯微鏡的分析)과 X-선회절분석(線回折分析)과 비교(比較))

  • Choi, Dae Ung;Hwang, Kyung Sun;Shin, Jae Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.253-255
    • /
    • 1973
  • Microscopic method was compared with X-ray diflraction analysis for the identification of rockforming minerals using 11 main rock samples in Korea. 1. There was no difference between X-ray diffraction analysis and microscopic one in major minerals, but some accessary minerals. 2. The rock-forming minerals of main rocks presented in this study occured almost in crystalline state so that they could be easily identified by X-ray analysis alone.

  • PDF

A Study on the Gas Hydrate Productivity on the Sediment Properties (퇴적층 물성이 가스하이드레이트 생산성에 미치는 영향 연구)

  • Park, Seoung-Soo;Ju, Woo-Sung;Han, Jeong-Min;Lee, Kye-Jung;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.192-195
    • /
    • 2008
  • Conventional gas deposits consist of pressurized gas held in porous and permeable reservoir rocks and its recovery takes place where the natural pressure of the gas reservoir forces gas to the surface. But gas hydrate is a crystalline solid, its prospects require reservoir rock properties approprate porosity, permeability with mapping of temperature and pressure conditions to define the hydrate stability zone. In this study, we have carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water with depressurization scheme. Also, it has been conducted the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production.

  • PDF

Variation of Thermal and Mechanical Properties of Crystalline Granite under Saturated-Loading Condition (침수-하중 조건에서의 결정질 화강암의 열적, 역학적 물성 변화)

  • Heo, Jin;Lee, Jae Chul;Seo, Jung Bum;Park, Seung Hun;Park, Jung Chan;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.224-233
    • /
    • 2014
  • It is well known that rock properties can be affected by loading in underground condition. In the case of flooded underground mine or tunnels, rock properties variation due to loading might be different from the loading in dry condition. In order to verify the influence of saturated loading condition on rock properties, various laboratory tests had been carried out. Loading on the rock specimen was controlled to be ranged in between 20 ~ 80% of UCS. By comparing the variation of thermal, mechanical, and physical properties of rock specimens under the same load in saturated and dry condition, it was possible to find that the rock properties can be more significantly disturbed in the saturated loading condition than in dry loading condition.