• Title/Summary/Keyword: Crystalline Solar cell

Search Result 388, Processing Time 0.024 seconds

PIII&D (Plasma immersion ion implantation & deposition)를 이용한 a-Ge (amorphous-Germanium) Thin Film의 결정성장

  • Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong;Lim, Sang-Ho;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.153-153
    • /
    • 2011
  • 유리나 폴리머를 기판으로 하는 TFT(Thin film transistor), solar cell에서는 낮은 공정 온도에서($200{\sim}500^{\circ}C$) amorphous semiconductor thin film을 poly-crystal semiconductor thin film으로 결정화 시키는 기술이 매우 중요하게 대두 되고 있다. Ge은 Si에 비해 높은 carrier mobility와 낮은 녹는점을 가지므로, 비 저항이 낮을 뿐만 아니라 더 낮은 온도에서 결정화 할 수 있다. 하지만 일반적으로 쓰이는 Ge의 결정화 방법은 비교적 높은 열처리 온도를 필요로 하거나, 결정화된 원소에 남아있는 metal이 불순물 역할을 한다는 문제점, 그리고 불균일한 결정크기를 만든다는 단점이 있었다. 그 중에서도 현재 가장 많이 쓰이고 있는 MIC, MILC는 metal과 a-Ge이 접촉되는 interface나, grain boundary diffusion에 의해 핵 생성이 일어나고, 결정이 성장하는 메커니즘을 가지고 있으므로 단순 증착과 열처리 만으로는 앞서 말한 단점을 극복하는데 한계를 가지고 있다. 이에 PIII&D 장비를 이용하면, 이온 주입된 원소들이 모재와 반응 할 수 있는 표면적이 커짐으로 핵 생성을 조절 할 수 있을 뿐만 아니라, 이온 주입 시 발생하는 self annealing effect로 결정 크기까지도 조절할 수 있다. 또한 이러한 모든 process가 한 진공 장비 내에서 이루어지므로 장비의 단순화와, 공정간 단계별로 발생하는 불순물과 표면산화를 막을 수 있으므로 절연체 위에 저항이 낮고, hall mobility가 높은 poly-crystalline Ge thin film을 만들 수 있다. 본 연구에서는, 주로 핵 생성과정에서 seed를 만드는 이온주입 조건과, 결정 성장이 일어나는 증착 조건에 따라서 Ge의 결정방향과 크기가 많은 차이를 보이는데, 이는 HR-XRD(High resolution X-ray Diffractometer)와 Raman spectroscopy를 이용하여 측정 하였으며, SEM과 AFM으로 결정의 크기와 표면 거칠기를 측정하였다. 또한 Hall effect measurement를 통해 poly-crystalline thin film 의 저항과 hall mobility를 측정하였다.

  • PDF

Effect of oxygen concentration and oxygen precipitation of the single crystalline wafer on solar cell efficiency (단결정 실리콘에서 산소농도에 따른 산소석출결함 변화와 태양전지 효율에 미치는 영향)

  • Lee, Song Hee;Kim, Sungtae;Oh, Byoung Jin;Cho, Yongrae;Baek, Sungsun;Yook, Youngjin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.246-251
    • /
    • 2014
  • Recent studies have shown methods of improving solar cell efficiency. Especially on single crystalline silicon wafer which is high-efficiency solar cell material that has been widely studied. Interstitial oxygen (Oi) is the main impurity in the Czochralski (Cz) growing method, and excess of this can form precipitates during cell fabrication. We have demonstrated the effect of Oi impurity and oxygen precipitation concentration of the wafer on Cz-silicon solar cell efficiency. The result showed a decrease in cell efficiency as Oi and oxygen precipitation increase. Moreover, we have found that the critical point of [Oi] to bring higher cell efficiency is at 14.5 ppma in non-existent Bulk Micro Defect (BMD).

The Research of Ni/Cu/Ag Contact Solar Cells for Low Cost & High Efficiency in Crystalline Solar Cells (결정질 실리콘 태양전지의 저가 고 효율화를 위한 Ni/Cu/Ag 전극 태양전지)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.214-219
    • /
    • 2009
  • In high-efficiency crystalline silicon solar cells, If high-efficiency solar cells are to be commercialized. It is need to develop superior contact formation method and material that can be inexpensive and simple without degradation of the solar cells ability. For reason of plated metallic contact is not only high metallic purity but also inexpensive manufacture. It is available to apply mass production. Especially, Nickel, Copper and Silver are applied widely in various electronic manufactures as easily formation is available by plating. The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposite the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 14.68 % on $0.2{\sim}0.6{\Omega}{\cdot}cm,\;20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Characteristics of doping process with various wafer thicknesses for thin crystalline silicon solar cell application (박형 결정질 실리콘 태양전지 제작을 위한 웨이퍼 두께에 따른 특성 연구)

  • Jeong, Kyeong-Taek;Lee, Hee-Jun;Song, Hee-Eun;Yoo, Kwon-Jong;Yang, O-Bong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.101-104
    • /
    • 2011
  • Many studies in crystalline silicon solar cell fabrication have been focused on high efficiency and low cost. In this paper, we carried out the doping procedure by varying the silicon wafer thicknesses and sheet resistance. The silicon wafers with various thicknesses were obtained by shiny etching and texturing. The thicknesses of wafers were 100, 120, 150, and $180{\mu}m$. The emitter layer formed by $POCl_3$ doping process had sheet resistance with 40 and $80{\Omega}/sq$ for selective emitter application. This experiment indicated wafer thickness did not influence sheet resistance but lifetime was strongly effected.

  • PDF

CHARACTERISTICS OF LOW-TEMPERATURE PROCESSED DYE-SENSITIZED SOLAR CELL BY ELECTROCHEMICAL IMPEDANCE AND PHOTOCURRENT-PHOTOVOLTAGE TRANSIENT SPECTROSCOPY

  • Li, Yuelong;Lee, Doh-Kwon;Kim, Kyung-Kon;Ko, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.381-381
    • /
    • 2011
  • In this study, a TiO2 colloidal sol was synthesized by sol-gel process, which was used as a "glue" agent to enhance interconnection of TiO2 particles in low temperature process for plastic dye sensitized solar cell. The crystalline phase of this TiO2 glue is pure anatase with average particles size of 5 nm, which was characterized by powder X-ray diffraction and high revolution-TEM. The viscous alcoholic paste without any organic binder was prepared from the mixture of commercial P25 powder and glue. Paste composition and sintering process parameters were optimized for high photovoltaic performance based on low temperature process. The electrochemical impedance spectroscopy and photocurrent-photovoltage transient spectroscopy were also employed to investigate the mechanism of electron transport in this binder free TiO2 film system.

  • PDF

Characteristics of Crystalline Silicon Solar Cells with Double Layer Antireflection Coating by PECVD (결정질 실리콘 태양전지의 이중 반사방지막 특성에 대한 연구)

  • Kim, Jin-Kuk;Park, Je-Jun;Hong, Ji-Hwa;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.243-247
    • /
    • 2012
  • The paper focuses on an anti-reflection (AR) coating deposited by PECVD in silicon solar cell fabrication. AR coating is effective to reduce the reflection of the light on the silicon wafer surface and then increase substantially the solar cell conversion efficiency. In this work, we carried out experiments to optimize double AR coating layer with silicon nitride and silicon oxide for the silicon solar cells. The p-type mono crystalline silicon wafers with $156{\times}156mm^2$ area, 0.5-3 ${\Omega}{\cdot}cm$ resistivity, and $200{\mu}m$ thickness were used. All wafers were textured in KOH solution, doped with $POCl_3$ and removed PSG before ARC process. The optimized thickness of each ARC layer was calculated by theoretical equation. For the double layer of AR coating, silicon nitride layer was deposited first using $SiH_4$ and $NH_3$, and then silicon oxide using $SiH_4$ and $N_2O$. As a result, reflectance of $SiO_2/SiN_x$ layer was lower than single $SiN_x$ and then it resulted in increase of short-circuit current and conversion efficiency. It indicates that the double AR coating layer is necessary to obtain the high efficiency solar cell with PECVD already used in commercial line.

  • PDF

The characterization of crystalline silicon solar cell according to junction depth by using PC1D (PC1D를 이용한 junction depth에 따른 결정질 실리콘 태양전지의 특성 분석)

  • Lim, Jungkyu;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.65.2-65.2
    • /
    • 2011
  • 일반적으로 결정질 실리콘 태양전지에서는 junction depth가 얕아짐으로써 단파장 영역에서의 수집효율이 향상되고 Jsc가 상승하기 때문에 junction depth가 얕은 것이 좋다. 또, 태양전지의 효율을 높이기 위해서는 낮은 재결합 속도가 필요한데 이를 위해서도 얕은 junction depth가 필요하다. 하지만 junction depth가 너무 얕으면 FF와 Voc가 낮아져 효율이 떨어지므로 junction depth를 최적화 할 필요가 있다. 본 논문에서는 PC1D 시뮬레이션을 사용하여 표면 농도를 고정시키고 junction depth를 가변하면서 이에 따른 cell의 parameter변화를 관찰하였다. 그 결과, 면저항 $120{\Omega}/{\square}$에서부터 효율이 saturation되었고, 그에 따른 parameter 값은 FF=76.28%, Jsc=$38.17mA/cm^2$, Voc=596.5V이며 junction depth가 $0.1726{\mu}m$일 때 효율은 17.37%이다.

  • PDF

The Durability Estimation of Crystalline PV Module according to Mechanical Stress (결정질 태양전지모듈의 외부 응력에 따른 장기적 내구성 예측)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.35-36
    • /
    • 2008
  • In this paper, we studied the long term durability estimation for crystalline photovoltaic module while exposing to mechanical stress. Solar cell and PV module have many different kinds of stresses from cell to module fabrication. For this reason, some solar cell shows micro crack that decrease crystallization. In here, we expose artificial mechanical load on surface of PV module. Through this, the periodic external force on PV module might give an negative effect. The further analysis is described in the following paper.

  • PDF

Power Output in Various Types of Solar Panels in the Central Region of Korea (한국 중부 지역의 태양광 모듈 타입에 따른 발전량 특성)

  • Chang, Hyo Sik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Solar panels are modules made up of many cells, like the N-type monosilicon, P-type monosilicon, P-type multisilicon, amorphous thin-film silicon, and CIGS solar cells. An efficient photovoltaic (PV) power is important to use to determine what kind of cell types are used because residential solar systems receive attention. In this study, we used 3-type solar panels - such as N-type monosilicon, P-type monosilicon, and CIGS solar cells - to investigate what kind of solar panel on a house or building performs the best. PV systems were composed of 3-type solar panels on the roof with each ~1.8 kW nominal power. N-type monosilicon solar panel resulted in the best power generation when monitored. Capacity Utilization Factor (CUF) and Performance Ratio (PR) of the N-type Si solar panel were 14.6% and 75% respectively. In comparison, N-type monosilicon and CIGS solar panels showed higher performance in power generation than P-type monosilicon solar power with increasing solar irradiance.

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee Eun-Joo;Lee Soo-Hong
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF