• Title/Summary/Keyword: Crystal structure and symmetry

Search Result 128, Processing Time 0.028 seconds

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

Hexaphenylbenzene $C_6(C_6H_5)_6$

  • Kim Young-Sang;Ko Jaejung;Kang Sang Ook;Han Won-Sik;Jeong Jae-Ho;Suh Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • The structure of the title compound has been determined by single-crystal X-ray diffraction work. The crystals are orthorhombic, space group $Pna2_1$ with a=11.095(3), b=21.834(7), c=12.574(4) $\AA$, and R1=0.0667. The average carbon bond length in aromaticity In the molecule is 1.386(1) $\AA$ and the average single bond length linking the central benEene ring and peripheral phenyl rings is 1.491(3) $\AA$. The average dihedral angle between the central benzene ring and each of six peripheral phenyl rings is $67.1(1)^{\circ}$ and the average dihedral angle between neighboring two phenyl rings is $55.0(1)^{\circ}$. Thus the molecule adopts a quasi-propeller configuration with approximate six-fold rotation symmetry.

Crystal and Molecular Structure of Hexaimidazolidone Chromium(III) Nitrate, $[Cr(OC_3H_6N_2)_6](NO_3)_3\cdot4H_2O$ (Hexaimidazolidone Chromium(III) Nitrate, $[Cr(OC_3H_6N_2)_6](NO_3)_3.4H_2O$의 결정 및 분자 구조)

  • Suh, Jung-Sun;Lee, Kyu-Wang;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.11 no.2
    • /
    • pp.71-74
    • /
    • 2000
  • The title compound, [Cr(OC3H6N2)6](NO3)3·4H2O, was crystallized in the centrosymmetric space group P with two half molecules in an asymmetric unit, and the two complete molecules are generated by inversion symmetry located at Cr atoms. Therefore, the Cr atoms are coordinated to six imidazolidone ligands through the oxygen atoms, and both CrO6 units have a slightly distorted octahedral geometry.

  • PDF

Cyclic Host Having Double Bonds as Bridging Units

  • Kyung-Soo Paek;Donald J. Cram
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.568-572
    • /
    • 1989
  • Terphenyl dialdehyde 6 was obtained in 17.4% overall yield through oxidative coupling, methylation, and bisformylation reactions starting from p-cresol, and then coupled intermolecularly using McMurry reaction to give 22-membered macrocylic host 7 in 14.4% yield. In crystal structure host 7 has $C2_v$ symmetry with cis-cis configuration of two double bonds. Four methoxy groups adjacent to double bonds and the other two methoxy groups are directed opposite side, forming a cavity which can nest a guest. The cavity is filled by two inward-turned methyl groups out of four methoxy groups adjacent to double bonds. The kinetically controlled reaction mechanism leading to cis product was proposed. The cation binding properties of 7 were obtained using picrate extraction experiment from $D_2O\; into\; CDCl_3\; at\; 25^{\circ}C$. All the spherical cations (from $Li^+ to NH4^+)$ are complexed with free energies of $7.3{\pm}0.3$ kcal/mol.

Crystal Structure of Fully Dehydrated Partially Ag$^+$-Exchanged Zeolite 4A, $Ag_{7.6}Na_{4.4}$-A. Ag$^+$ Ions Prefer 6-Ring Sites. One Ag$^+$ Ion is Reduced

  • Kim, Yang;Han, Young-Wook;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.190-193
    • /
    • 1986
  • The structure of partially $Ag^+$-exchanged zeolite 4A, $Ag_{7.6}Na_{4.4}-A$, vacuum dehydrated at $370^{\circ}C$, has been determined by single-crystal x-ray diffraction techniques in the cubic space group, Pm3m (a = 12.311(1)${\AA}$) at $24(1)^{\circ}}C$. The structure was refined to the final error indices $R_1$ = $R_2$ (weighted) = 0.064 using 266 independent reflections for which $I_0$>$3{\sigma}(I_0)$. Three $Na^+$ ions occupy the 3 8-ring sites, and the remaining ions, 1.4 $Na^+$ and 6.6 $Ag^+$, fill the 8 6-ring sites; each $Ag^+$ ion is nearly in the [111] plane of its 3 O(3) ligands, and each $Na^+$ ion is 0.9${\AA}$ from its corresponding plane, on the large-cavity side. One reduced silver atom per unit cell was found inside the sodalite unit. It was presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework. It may be present as a hexasilver cluster in 1/6 of the sodalite units, or, most attractively among several alternatives, as an isolated Ag atom coordinated to 4 Ag ions in each sodalite unit to give $(Ag_5)^{4+}$, symmetry 4mm.

Preparation, Structure, and Photoemission Studies on the High Temperature Superconductor $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$

  • Choy, Jin-Ho;Choe, Won-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.379-383
    • /
    • 1990
  • $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$, with x = 0.05, 0.2, 0.4, 0.7 and 1.0 had been prepared by the thermal decomposition of corresponding nitrates. Among them, the sample with x = 0.05 shows above-liquid-$N_2$ temperature superconductivity with $T_c$ of 88.7K. According to the X-ray diffraction analysis, its crystal symmetry was estimated as orthorhombic with the lattice parameters of a = 3.866${\AA}$, b = 3.893${\AA}$, c = 11.715${\AA}$. The chemical composition of the sample was determined by electron probe microanalysis and the chemical composition around its grain boundaries was carefully studied by the X-ray line scanning technique. From the observed binding energy of Ni-$2p_{3/2}$ orbital electron (B.E. = 853 eV) measured by X-ray photoelectron spectroscopy, the valency state of nickel stabilized in $YBa_2Cu_{2.95}Ni_{0.05}O_{7-{\delta}}$ oxide lattice could be determined to be Ni(II).

Reaction of Dehydrated Ag$_2$Ca$_5$-A with Cesium. Crystal Structures of Fully Dehydrated Ag$_2$Ca$_5$-A and Ag$_2$Cs$_{10}$-A

  • Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.243-247
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+\;and\;Ca^{2+}$ exchanged zeolite A, $Ag_2Ca_$5-A, reacting with 0.01 Torr of Cs vapor at $200^{\circ}C$ for 2 hours and 0.1 Torr of Cs vapor at $250^{\circ}C$ for 48 hours, respectively, have been determined by single crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C$. The stoichiometry of first crystal was $Ag_2Ca_5$-A (a = 12.294(1)${\AA}$), indicating that Cs vapor did not react with cations in zeolite A and that of second crystal was $Ag_2Cs_{10}$-A (a = 12.166(1)${\AA}$), indicating that all $Ca^{2+}$ ions were reduced by Cs vapor and replaced by $Cs^+$ ions. Full-matrix least-squares refinements of $Ag_2Ca_5-A\;and\;Ag_2Cs_{10}$-A has converged to the final error indices, $R_1\;=\;0.041\;and\;R_2$ = 0.048 with 227 reflections, and $R_1\;=\;0.117\;an\;n\;fdd\;R_2$ = 0.120 with 167 reflections, respectively, for which I > $3{\sigma}$(I). In the structure of $Ag_2Ca_5$-A, both $Ag^+$ ions and $Ca^{2+}$ ions lie on two crystal symmetrically independent threefold axis sites on the 6-rings; $2\;Ag^+$ ions are recessed 0.33 ${\;AA}$ from the (111) planes of three O(3) oxygens and 5 $Ca^{2+}$ ions lie on the nearly center of each 6-oxygen planes. In the structure of $Ag_2Cs_{10}-A,\;Cs^+$ ions lie on the 5 different crystallographic sites. 3 $Cs^+$ ions lie at the centers of the 8-rings at sites of D4h symmetry. 6 $Cs^+$ ions lie on the threefold axes of unit cell: $4\;Cs^+$ ions are found deep in the large cavity and 2 $Cs^+$ ions are found in the sodalite cavity. One $Cs^+$ ion is found in the large cavity near a 4-ring.

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

The Crystal and Molecular Structure of N-tert-Butyl-2-(1-acetoxy-2-fluoro-1-butyl)benzenesulfonamide, $C_{16}H_{24}FNO_4S$ (N-tert-Butyl-2-(1-acetoxy-2-fluoro-1-butyl)benzenesulfonamide의 결정 및 분자구조)

  • 김문집;이재혁;김대황
    • Korean Journal of Crystallography
    • /
    • v.9 no.2
    • /
    • pp.120-124
    • /
    • 1998
  • N-tert-Butyl-2-(1-acetoxy-2-fluoro-1-butyl)benzenesulfonamide의 분자 및 결정구조를 X-선회절법으로 연구하였다. 결정의 공간군은 P21/c이고, 단위포 상수는 a=8.583(2) , b=14.674(2) , c=14.703(2) , β=103.23(1)0, Z=4, V=1802.6(5) 3, Dc=1.27 Mgm-3이다. 회절반점들의 세기는 Rigaku AFC-5 Diffractometer로 얻었으며, graphite로 단색화한 Cu-KαX-선을 사용하였다. 분자구조는 직접법으로 풀었으며 최소자승법으로 정밀화하였다. 최종신뢰도 R값은 2472개의 회절반점에 대하여 0.069였다. 분자 내에 N(7)과 O(4)사이에 1개의 수소결합[2.990(4) ]을 갖으며, C(14)와 C(15)는 반대배열을 갖고 있다. 분자간 가장 인접한 거리는 3.465(5) [C(19) O(5)] (symmetry code: -x, y+1/2, -z+1/2)로 분자간 접촉은 van der Waals 힘에 의해 결합되어 있다.

  • PDF

Dielectric and Ferroelectric Properties of Nb Doped BNT-Based Relaxor Ferroelectrics

  • Maqbool, Adnan;Hussain, Ali;Malik, Rizwan Ahmed;Zaman, Arif;Song, Tae Kwon;Kim, Won-Jeong;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.317-321
    • /
    • 2015
  • The effects of Nb doping on the crystal structure, microstructure, and dielectric ferroelectric and piezoelectric properties of $(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{(1-x)}Nb_xO_3-0.01SrZrO_3$ (BNBTNb-SZ, with ${\chi}=0$, 0.01 and 0.02) ceramics have been investigated. X-ray diffraction patterns revealed that all ceramics have a pure perovskite structure with tetragonal symmetry. The grain size of the ceramics slightly decreased and a change in grain morphology from square to spherical shape was observed in the Nb-doped samples. The maximum dielectric constant temperature ($T_m$) increases with increasing amount of Nb; however, ferroelectric-relaxor transition temperature ($T_{F-R}$) and maximum dielectric constant (${\varepsilon}_m$) values decrease gradually. Nb addition disrupted the polarization hysteresis loops of the BNBT-SZ ceramics by leading a reduction in the remnant polarization coercive field and piezoelectric constant.