• 제목/요약/키워드: Crystal shape

검색결과 583건 처리시간 0.029초

열교환법에서 도가니 형상 변화가 사파이어 결정 온도와 고/액 계면 형태에 미치는 영향 (Effects of the crucible shape on the temperature of sapphire crystal and the shape of melt/crystal interface in heat exchanger method)

  • 임수진;왕종회;임종인
    • 한국결정성장학회지
    • /
    • 제14권4호
    • /
    • pp.155-159
    • /
    • 2004
  • 열교환법을 활용한 사파이어 단결정 성장 공정에서 도가니 형상 변화가 결정 온도와 고/액 계면 형태에 미치는 영향에 관해 고찰하기 위해 유한요소법, implicit Euler법, frontal 해석 연산을 활용한 수치해석을 수행하였다. 개발된 컴퓨터 시뮬레이션 기법은 고/액 계면의 형상이 반구 형상에서 평면 형상으로 전환되는 열전달 현상 해석에 효율적이다. 본 연구에서는 고/액 계면의 휨도를 개선하기 위해, 도가니 밑면의 다양한 형상을 고려하였으며, 도가니 형상은 공정 최적화 변수로 고려되어야 한다.

단결정 실리콘 잉곳 결정성장 속도에 따른 고-액 경계면 형성 및 Defect 최적화 (Melt-Crystal Interface Shape Formation by Crystal Growth Rate and Defect Optimization in Single Crystal Silicon Ingot)

  • 전혜준;박주홍;블라디미르 아르테미예프;정재학
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.17-26
    • /
    • 2020
  • It is clear that monocrystalline Silicon (Si) ingots are the key raw material for semiconductors devices. In the present industries markets, most of monocrystalline Silicon (Si) ingots are made by Czochralski Process due to their advantages with low production cost and the big crystal diameters in comparison with other manufacturing process such as Float-Zone technique. However, the disadvantage of Czochralski Process is the presence of impurities such as oxygen or carbon from the quartz and graphite crucible which later will resulted in defects and then lowering the efficiency of Si wafer. The heat transfer plays an important role in the formation of Si ingots. However, the heat transfer generates convection in Si molten state which induces the defects in Si crystal. In this study, a crystal growth simulation software was used to optimize the Si crystal growth process. The furnace and system design were modified. The results showed the melt-crystal interface shape can affect the Si crystal growth rate and defect points. In this study, the defect points and desired interface shape were controlled by specific crystal growth rate condition.

초크랄스키법에 의한 실리콘 단결정성장에서 회전효과가 미치는 영향에 대한 연구 (Effects of Rotation on the Czochralski Silicon Single Crystal Growth)

  • 김무근
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1308-1318
    • /
    • 1995
  • The influence of varying rotation speed of both crystal and crucible was numerically investigated for the Czochralski silicon-crystal growth. Based on a simplified model assuming flatness of free surfrae, the Navier-Stokes Boussinesq equations were employed to identify the flow pattern, temperature distribution as well as the shape of the melt/crystal interface. The present results showed that the interface shape was relatively convex with respect to the melt at lower pulling rate and tended to be concave as the pulling rate increased. In particular, the experimentally observed gull-winged shape of the interface was qualitatively in agreement with the predicted shape. The rotation of crystal alone little affected the growth system. When the rotation speed of the crucible was increased, there occurred inversion of the interface shape from convex to concave pattern. At rapid rotation of the crucible, an interesting channel formation was predictied primarily due to the assumption of laminar flow.

Effect of Crystal Shape on the Grain Growth during Liquid Phase Sintering of Ceramics

  • Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.728-733
    • /
    • 2006
  • The equilibrium or growth shape of ceramic materials is classified largely into two categories according to the thermodynamic conditions imposed. One is a polyhedral shape where the surface free energy is anisotropic, and the other a spherical shape where the surface free energy is isotropic. In the case of grains with a polyhedral shape of anisotropic surface free energy, socalled abnormal grain growth usually takes place due to a significant energy barrier for a growth unit to be attached to the crystal surface. In the case of grains with a spherical shape of isotropic surface free energy, however, normal grain growth with a uniform size distribution takes place. In this contribution, the state-of-the-art of our current understanding of the relationship between the crystal shape and the microstructure evolution during the sintering of ceramic materials in the presence of a liquid phase was discussed.

Cz 실리콘 단결정에서 비대칭 자기장이 고액 계면에 미치는 영향 (Effect of asymmetric magnetic fields on the interface shape in Czochralski silicon crystals)

  • 홍영호;심광보
    • 한국결정성장학회지
    • /
    • 제18권4호
    • /
    • pp.140-145
    • /
    • 2008
  • Cz법을 이용하여 다양한 성장 조건하에서 실리콘 단결정이 성장되었따. 고액 계면 형상의 차이는 다양한 자기장 분포를 통하여 구현되었으며 결정의 고액 계면에 있어 ZGP(zero-Gauss plane) 형태와 자기장 세기(MI)의 효과가 실험적으로 연구되었따. ZGP의 형태는 커습 자기장에 있어 상부 및 하부 코일에 인가되는 자기장의 비율(MR)로 인하여 평평하거나 포물선의 형태를 갖게 된다. MR이 증가함에 따라 고액 계면은 더욱 음각(more concave)의 형태가 되고 이는 MR 증가에 따른 고액 계면으로의 뜨거운 융액이 쉽게 유입될 수 있음을 의미한다. 고액 계면의 효과적인 형상은 자기장 분포에 의존됨을 발견하였으며 실험결과는 다른 연구와 비교하였다.

Modelling of transport phenomena and meniscus shape in Czochralski growth of silicon material

  • Bae, Sun-Hyuk;Wang, Jong-Hoe;Kim, Do-Hyun
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.454-458
    • /
    • 1999
  • Hydrodynamic Thermal Capilary Model developed previously has been modified to study the transport phenomena in the Czochralski process. Our analysis is focused on the heat transfer in the system, convection in the melt phase, and the meniscus and interface shape. Four major forces drive melt flow in the crucible, which include thermal buoyancy force in the melt, thermocapillary force along the curved meniscus, crucible rotation and crystal rotation. Individual flow mechanism due to each driving force has been examined to determine its interaction with the meniscus and interface shape. A nominal 4-inch-diameter silicon crystal growth process is chosen as a subject for analysis. Heater temperature profile for constant diameter crystal is also present as a function of crystal height or fraction solidified.

  • PDF

열교환법 공정에서 고/액 계면의 형태에 미치는 자연대류의 영향 (Effects of natural convection on the melt/solid interface shape in the HEM process)

  • 왕종회;김도현
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.41-46
    • /
    • 1997
  • 열교환법에 의한 결정 성장에서 용융액 내에서의 유동장의 변화와 대류 열전달이 고/액 계면의 형태와 위치에 미치는 영향에 대해 고찰하였다. 비록 도가니 내의 온도분포가 안정한 구조라도 고/액 계면이 반구형태를 가지기 때문에 안정화가 깨어지게 되고, 반경방향 온도 기울기에 의한 용응액 내에서의 자연대류 흐름이 무시할 수 없을 정도로 발생한다. 대류 열전달이 존재하는 경우에 최대 휨도는 대류 열전달이 존재하지 않은 경우에 비해 감소하며, 열교환법에서의 정확한 열전달 공정모사를 위해 대류 열전달이 고려되어야 한다.

  • PDF

Effect of anisotropic diffusion coefficient on the evolution of the interface void in copper metallization for integrated circuit

  • Choy, J.H.
    • 한국결정성장학회지
    • /
    • 제14권2호
    • /
    • pp.58-62
    • /
    • 2004
  • The shape evolution of the interface void of copper metallization for intergrated circuits under electromigration stress is modeled. A 2-dimensional finite-difference numerical method is employed for computing time evolution of the void shape driven by surface diffusion, and the electrostatic problem is solved by boundary element method. When the diffusion coefficient is isotropic, the numerical results agree well with the known case of wedge-shape void evolution. The numerical results for the anisotropic diffusion coefficient show that the initially circular void evolves to become a fatal slitlike shape when the electron wind force is large, while the shape becomes non-fatal and circular as the electron wind force decreases. The results indicate that the open circuit failure caused by slit-like void shape is far less probable to be observed for copper metallization under a normal electromigration stress condition.

수정된 부유띠결정성장법에서 결정봉의 회전이 유동 및 열전달에 미치는 효과 (Effects of the crystal rotation on heat transfer and fluid flow in the modified floating-zone crystal growth)

  • 서정세
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3322-3333
    • /
    • 1996
  • A numerical analysis has been conducted to investigate a modified floating-zone crystal growth process in which most of the melt surface is covered with a heated ring. The crystal rod is not only pulled downward but rotated around its axisymmetric line during crystal growth process in order to produce the flat interface of crystal growth and the single crystal growth of NaNO3 is considered in 6mm diameter. The present study is made from a full-equation-based analysis considering a pulling velocity in all of solid and liquid domains and both of solid-liquid interfaces are tracked simultaneously with a governing equation in each domain. Numerical results are mainly presented for the comparison of the surface shape of rotational crystal rod with that of no-rotational crystal rod and the effects of revolution speeds of the crystal rod. Results show that the rotation of crystal rod produces more its flat surface. In addition, the shape of crystal growth near the centerline is more concaved with the increase in the revolution speed of crystal rod. The flow pattern and temperature distribution is analyzed and presented in each case. As the pulling velocity of crystal rod is increasing, the free surface of the melt below the heated ring is enlarged due to the crystal interface migrating downward.

Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part I. cross-sectional area

  • Lee, Yong Keun;Lee, Kangsoo
    • 한국결정성장학회지
    • /
    • 제23권2호
    • /
    • pp.67-75
    • /
    • 2013
  • In order to improve osseo-integration of a dental implant with bone crystal we studied an implant with holes inside its body to deliver bioactive materials based on a proposed patent. After bioactive material is absorbed, bone crystal can grow into holes to increase implant bonding in addition to surface integration. The larger cross section area of outlet holes showed the less values of the maximum stress, and the stress concentrations near the uppermost outlet holes were also reduced with an increasing number of outlet holes. The conclusion, that the uppermost outlet design improvement was most effective to reduce the stress concentration and improve the growth rate of bone crystal, could be drawn. After the design optimizations, Type 6-C had provided the best results in this study. The overall shape optimization studies on the shape, location, number, and so on, of the outlet holes, should be carried out further.