• Title/Summary/Keyword: Crystal impurity

Search Result 182, Processing Time 0.023 seconds

Growth and characterization of ZnSe/GaAs epilayer by hot-wall epitaxy method (Hot-Wal Epitaxy 방법에 의한 ZnSe/GaAs 박막 성장과 특성)

  • 정태수;강창훈;유평렬
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.302-307
    • /
    • 1999
  • We have grown a high quality ZnSe(100) epilayer on the GaAs(100) substrate by hot-wall epitaxy method. The FWHM value from double-crystal x-ray diffraction rocking curve and growth rate of the ZnSe epilayer grown under the optimal growth conditions were 195 arcsec and 0.03 $\mu \textrm m$/min, respectively. The $I_2^U$ and $I_2^L$ peaks, which split by strain due to lattice mismatch between substrate and epilayer, were measured from the photoluminescence experiment. And we found that the residual impurities in ZnSe epilayer were concerned with Al or CI elements from the calculated binding energy of donor impurity.

  • PDF

Atomistic modeling for 3D dynamci simulation of ion implantation into crystalline silicon

  • 손명식;강정원;변기량;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.421-424
    • /
    • 1998
  • In this paper are presented a newly proposed 3D monte carlo (MC) damage model for the dynamic simulation in order to more accurately and consistently predict the implant-induced point defect distributions of the various ions in crystalline silicon. This model was applied to phosphorus implants for the ULSI CMOS technology developement. In additon, a newly applied 3D-trajectory split method has been implemented into our model to reduce the statistical fluctuations of the implanted impurity and the defect profiles in the relatively large implanted area as compared to 1D or 2D simulations. Also, an empirical electronic energy loss model is proposed for phosphorus and silicon implants. The 3D formations of the amorphous region and the ultra-shallow junction around the implanted region could be predicted by using our model, TRICSI(Transport ions into crystal-silicon).

  • PDF

Crystal Growth and Optical Property of Rutiles Doped with Impurity Ions (불순이온을 첨가한 Rutile의 단결정 성장에 관한 연구)

  • 이성영;김병호;정석종;유영문
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.83-87
    • /
    • 1999
  • 부유대용융법에 의하여 전이금속, 희토류금속, 및 3A족 금속이온의 종류와 농도를 조절하면서 Rutile 단결정을 성장하였으며, 결정결함과 1.55 ㎛에서의 광 투과도에 미치는 각 불순이온의 영향을 조사하였다. 주입된 불순이온 중에서 양호한 결정형을 나타내는 이온은 V5+, Fe3+, Al3+, Zr4+, Ga3+, Sc3+이었으며, Al3+, Zr4+, Sc3+ 이온은 우수한 투과도를 나타내었다. 성장된 결정 중에서 가장 양호한 결정형을 제공하고, 산소결핍 및 low-angle grain boundaries의 형성을 최대로 억제하며, 양호한 투과도를 나타낸 우수한 품질의 Rutile 단결정은 TiO2 99.4 at%-Al2O3 0.6 at%로 평가되었다.

  • PDF

Photoactivity of n-type $TiO_2$ Ceramic Electrodes (n-형 $TiO_2$ 세라믹 전극의 광 활동도)

  • 윤기현;김종선
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.9-14
    • /
    • 1985
  • The quantum efficiency vs. wavelength curves with different reducing treatments for the 99.99% and 98.5% $TiO_2$ ceramic electrodes have been analyzed according to the Schottky barrier model of the semiconductor-elect-rolyte interface, The model allows the main physical parameters governing the photoelectrochemical properties of the semicon-ductor to be determined. According to these data the impurity ions as three valence state ($Fe^{3+})$ in the $TiO_2$ raw materials have great influence on the photoresponse and the $TiO_2$ ceramic electrodes show much lower quantum efficiency than the $TiO_2$ single crystal due to existence of the recombination centers.

  • PDF

Synthesis and Characterization of $TiO_2$ Ultrafine Powder by Chemical Vapor Deposition (화학 증착법에 의한 $TiO_2$ 초미분의 제조 및 입자 특성에 관한 연구)

  • 염선민;이성호;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • TiO2 fine powders were synthesized using oxygenolysis and hydrolysis reaction of TiCl4 vapor in gas phase. The TiO2 powder synthesized showed morphological differences depending on reaction system as follows: TiCl4-O2 reaction system produced the monosized particles having polyhedral shape with well-defined crystal planes and the particles did not agglomerate into secondary particles. TiCl4-H2O reaction system, whereas, produced the spherical secondary particles which consisted of fine primary particles. Other powder characteristics such as particle size, impurity content and rutile content are also reported in this study.

  • PDF

Phenomenological monte carlo simulation model for predicting B, $BF_2$, As, P and Si implant profiles in silicon-based semiconductor device

  • Kwon, Oh-Kuen;Son, Myung-Sik;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • This paper presents a newly enhanced damage model in Monte Carlo (MC) simulation for the accurate prediction of 3-Dimensional (3D) as-implanted impurity and point defect profiles induced by ion implantation in (100) crystal silicon. An empirical electronic energy loss model for B, BF2, As, P and Si self implant over the wide energy range has been proposed for the ULSI device technology and development. Our model shows very good agreement with the SIMS data over the wide energy range. In the damage accumulation, we considered the self-annealing effects by introducing our proposed non-linear recomvination probability function of each point defect for the computational efficiency. For the damage profiles, we compared the published RBS/channeling data with our results of phosphorus implants. Our damage model shows very reasonable agreement with the experiments for phosphorus implants.

  • PDF

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

The Study of the Charge Transport on the Surface Layer of the Patterned Vertical Alignment(PVA) Mode

  • Choi, Nak-Cho;You, Jae-Yong;Jung, Ji-Young;Rhie, Kung-Won;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.571-573
    • /
    • 2007
  • It is known that the main source of the area image sticking is the ion charge adsorption on the alignment layer. We found out that the adsorption of the ion charge of the liquid crystal in the cell was physisorption, which takes place between all molecules on any surface providing the adsorption force is small.

  • PDF

Optical Properties of Zn4GeSe6:Co2+ Single Crystals (Zn4GeSe6:Co2+ 단결정의 광학적 특성)

  • 김형곤;김남오;최영일;김덕태;김창주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.272-279
    • /
    • 2003
  • In this work Zn$_4$GeSe$_{6}$ :CO$^{2+}$ single crystals were grown by the chemical transport reaction method in which the iodine was used as the transporting agent. The Zn$_4$GeSe$_{6}$ :CO$^{2+}$ single crystal was found to have a monoclinic structure. The optical absorption spectra of grown crystals were investigated using a temperature-controlled UV-VIS -NIR spectrophotometer. The temperature dependence of band-edge absorption was in a good agreement with the Varshni equation. The observed impurity absorption peaks could be explained as arising from the electron transition between energy levels of Co$^{2+}$ ion sited at the T$_{d}$ symmetry point.

Electronic States of Uranium Dioxide

  • Younsuk Yun;Park, Kwangheon;Hunhwa Lim;Song, Kun-Woo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • The details of the electronic structure of the perfect crystal provides a critically important foundation for understanding the various defect states in uranium dioxide. In order to understand the local defect and impurity mechanism, the calculation of electronic structure of UO$_2$ in the one-electron approximation was carried out, using a semi-empirical tight-binding formalism(LCAO) with and without f-orbitals. The energy band, local and total density of states for both spin states are calculated from the spectral representation of Green’s function. The bonding mechanism in Perfect lattice of UO$_2$ is discussed based upon the calculations of band structure, local and total density of states.