• Title/Summary/Keyword: Crystal formation

Search Result 994, Processing Time 0.041 seconds

Electron Microscopic Evidence of Paraporal Crystal Inclusion Biogenesis in Bacillus sphaericus Strain 1593

  • Lee, Young-Ju;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1106-1110
    • /
    • 2001
  • The parasporal biogenesis of crystal inclusion during the sporulation of Bacillus sphaericus strain 1593 was observed using transmission electron microscopy. The crystal biogenesis and sporulation process involved a sequence of events talking about 10 h. The sporulation Precesses were found to be similar to previous findings. The crystal biogenesis of B. sphaericus was initiated at the start of engulfment and nearly completed by the time of exosporium formation. The crystal formation was clearly associated with the outer forespore membrane from stages III through VI, and the crystals grew from polypeptide-like chains originated from the outer forespore membrane. These observations are different from previous findings, which report no association with the forespore membrane. The crystals were located adjacent to the outer membrane of the spore until the release stage. The axes size of the bipyramidal crystal was approximately $0.25{\mu}m{\times}42{\mu}m$. During crystal biogenesis, the crystal development could be classified into four stages; initiation stage Cl (sporulation stage . III), growth stage C2 (sporulation III to V), envelopment and maturation C3 (sporulation V to V), and finally release stage C4 (sporulation Vll).

  • PDF

Measurement of Crystal Formation in Supersaturated Solution

  • Kim, Byung-Chul;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1196-1200
    • /
    • 2003
  • The degree of supersaturation is an important measure for the operation of crystallization processes, because it is directly related to the control of crystal size distribution and shape. A conventional technique utilizing solution composition and temperature has a variety of problems caused from the measurement error and the handling of analyzing samples. A monitoring system of the supersaturation using a quartz crystal sensor is proposed here, and its performance is examined applying different manipulations of coolant temperature. The experimental outcome and photographic examination indicate that the measurements of resonant frequency and resistance of the sensor can be used for the prediction of the formation and growth of solid crystal from the crystallization process. The monitoring system eliminates the intrinsic error source of the conventional system to give the improved measurement and on-line application availability.

  • PDF

Band broadening of cholesteric liquid crystal film through the various UV treatments

  • Shin, Dong-Myung;Song, Dong-Mee;Kim, Young-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1024-1027
    • /
    • 2003
  • The formation of cholesteric liquid crystal (CLC) film reflecting a broadbanded visible spectrum by application of a liquid crystalline coating followed by UV polymerization (photo-curing) is described. Also, the formation of patterned coatings obtained by a sequence of UV exposure steps is discussed. Such coatings play an important role in the improvement of the performance of liquid crystal displays. In order to make these CLC films, we synthesized new cholesteric liquid crystal molecules (Ch-chol) containing the active reaction site to UV light and investigated to broaden the bandwidth of these cholesteric filters based on the various UV treatments.

  • PDF

Synthesis of zeolite MFI films on alumina and silicon supports using seed crystals (알루미나와 실리콘 지지체에 종자결정에 의한 제올라이트 MFI 필름의 합성)

  • Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2008
  • Contiuous c-oriented zeolite MFI films $(<35{\mu}m)$ were prepared by hydrothermal secondary growth of silicalite-1 seed crystal in the surface of alumina porous substrate and silicon substrate. The supported films were characterized with scanning electron microscopy and X-ray diffraction. Effect of substrate surface roughness were investigated and a mechanism for c-oriented film formation and characteristic dom-like defects formation which is observed after seeding growth was discussed. The roughness of substrate plays an important role.

Mechanism of Formation of Three Dimensional Structures of Particles in a Liquid Crystal

  • West, John L.;Zhang, Ke;Liao, Guangxun;Reznikov, Yuri;Andrienko, Denis;Glushchenko, Anatoliy V.
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • In this work we report methods of formation of three-dimensional structures of particles in a liquid crystal host. We found that, under the appropriate conditions, the particles are captured and dragged by the moving isotropic/nematic front during the phase transition process. This movement of the particles can be enhanced significantly or suppressed drastically with the influence of an electric field and/or with changing the conditions of the phase transition, such as the rate of cooling. As a result, a wide variety of particle structures can be obtained ranging from a fine-grained cellular structure to stripes of varying periods to a course-grained "root" structures. Changing the properties of the materials, such as the size and density of the particles and the surface anchoring of the liquid crystal at the particle surface, can also be used to control the morphology of the three-dimensional particle network and adjust the physical properties of the resulting dispersions. These particle structures may be used to affect the performance of LCD's much as polymers have been used in the past.

Single-Layer Color Cholesteric Liquid Crystal Displays

  • Lu, Shin-Ying;Lin, Yu-hui;Chien, Liang-Chy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.982-985
    • /
    • 2007
  • The authors report methods of fabrication singlelayer color cholesteric liquid crystal displays (CLCDs). A single-layer CLCD has been prepared from a polymerstabilized cholesteric liquid crystal. The unique feature of the polymer stabilization is in that the electrically switched colors preserve high reflectivity. A bistable single-layer CLCD has been prepared by the formation of polymer barrier walls and light-tuned cholesteric pitches to reflect blue, green and red color sub-pixels.

  • PDF

Step growth and defects formation on growth interface for SiC sublimation growth. (SiC의 승화 성장시 성장 계면에서의 step 성장과 결함 생성)

  • 강승민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.558-562
    • /
    • 1999
  • For 6H-SiC crystals which was obtained by sublimation growth, the formation of micropipes and internal planar defects was discussed in consideration of the inter-relationship between mass adsorption behavior and the defects origin on the growth interface on the basis of KSV theory and the the step growth pattern on the vicinal plane. Micropipes and planar defects was formed in the region which the step could not be grown by impurities impinging. It was realized that the internal defects formation was related to the crystallographic step planes formed on the growth interface and the migration of the molecules adsorbed on it.

  • PDF

Low temperature deposition of carbon nanofilaments using vacuum-sublimated $Fe(CO)_5$ catalyst with thermal chemical vapor deposition

  • Kim, Nam-Seok;Kim, Kwang-Duk;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Carbon nanofilaments were deposited on silicon oxide substrate by thermal chemical vapor deposition method. We used $Fe(CO)_5$ as the catalyst for the carbon nanofilaments formation. Around $800^{\circ}C$ substrate temperature, the formation density of carbon nanofilaments could be enhanced by the vacuum sublimation technique of $Fe(CO)_5$, compared with the conventional spin coating technique. Finally, we could achieve the low temperature, as low as $350^{\circ}C$, formation of carbon nanofilaments using the sublimated Fe-complex nanograins with thermal chemical vapor deposition. Detailed morphologies and characteristics of the carbon nanofilaments were investigated. Based on these results, the role of the vacuum sublimation technique for the low temperature deposition of carbon nanofilaments was discussed.

The Effect of Layer Spacing Changes in the SmA Phase on Defects Observed in SSFLC Devices.

  • Wang, Chenhui;Bos, Philip J.;Kumar, Satyendra;Wand, Michael;Handschy, Mark
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.193-197
    • /
    • 2004
  • The effect of the temperature dependence of the smectic layer spacing in the smectic-A (SmA) phase on the formation of defects in the ferroelectric smectic-$C^{\ast}$ ($SmC^{\ast}$) phase is investigated with x-ray scattering technique. The study is based on thin parallel-aligned surface stabilized ferroelectric liquid crystal cells with two different alignment conditions, high pretilt $SiO_x$, alignment and low pretilt polyimide films. It is found that defects observed in the $SmC^{\ast}$ phase have much more profound dependence on the layer changes and chevron formation in the SmA phase than in the $SmC^{\ast}$ phase. We find that thermal layer expansion with decreasing temperature in the SmA phase suppresses the formation of defects observed in the SmC phase.

  • PDF

Different formation of carbon nanofilaments as a function of the gap between the substrate and the microwave plasma

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.20-24
    • /
    • 2006
  • Iridium-catalyzed carbon nanofilaments were formed on MgO substrate as a function of the gap between the substrate and the plasma using microwave plasma-enhanced chemical vapor deposition method. Under the remote plasma condition, carbon nanofibers were formed on the substrate. Under the adjacent plasma condition, on the other hand, carbon nanotubes-like materials instead of carbon nanofibers could be formed. When the substrate immersed into the plasma, any carbon nanofilaments formation couldn't be observed. During the reaction, the substrate temperatures were measured as a function of the gap. Based on these results, the cause for the different carbon nanofilaments formation according to the gap was discussed.