• Title/Summary/Keyword: Crystal Orientation

Search Result 563, Processing Time 0.028 seconds

Crystal Plasticity Simulation of Ti-6Al-4V Under Fretting Fatigue (프레팅 피로를 받는 Ti-6Al-4V의 결정소성 시뮬레이션)

  • Goh Chung Hyun;Lee Kee Seok;Ko Jun Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.511-517
    • /
    • 2005
  • Fretting fatigue is often the root cause of the nucleation of cracks at attachments of structural components. Since fretting fatigue damage accumulation occurs over relatively small volumes, the subsurface cyclic plastic strain is expected to be rather non-uniformly distributed in polycrystalline materials. The scale of the cyclic plasticity and the damage process zones is often on the order of microstructure dimensions. Fretting damage analyses using cyclic crystal plasticity constitutive models have the potential to account for the influence of size, morphology, and crystallographic orientation of grains on fretting damage evolution. Two-dimensional plane strain simulations of fretting fatigue are performed using the cyclic properties of Ti-6Al-4V. The crystal plasticity simulations are compared to an initially isotropic $J_{2}$ theory with nonlinear kinematic hardening as well as to experiments. The influence of initially isotropic versus textured microstructure in the presence of crystallographic slip is studied.

Magnetic-field Sensitivity of PMN-PZT/Ni Magnetoelectric Composite with Piezoelectric Single Crystal Mode Changes (PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성)

  • Park, Sojeong;Peddigari, Mahesh;Ryu, Jungho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-50
    • /
    • 2020
  • Magnetoelectric (ME) composites were designed using the PMN-PZT single crystal and Ni foils; the properties and magnetic-field sensitivities of ME composites with different piezoelectric vibration modes (i.e., 31, 32, and 36 modes that depend on the crystal orientation of the single crystal) were compared. In the off-resonance condition, the ME coupling properties of the ME composites with the 32 and 36 piezoelectric vibration modes were better than those of the ME composites with the 31 piezoelectric vibration mode. However, in the resonance condition, the ME coupling properties of the ME composites were almost similar, irrespective of the piezoelectric vibration mode. Additionally, in the off-resonance condition (at 1 kHz), the magnetic-field sensitivity of the ME composites with the 36 piezoelectric vibration mode was up to 2 nT and those of the ME composites with the 31 and 32 piezoelectric vibration modes were up to 5 nT. These magnetic-field sensitivities are similar to those offered by conventional high-sensitivity magnetic-field sensors; the potential of the proposed sensor to replace costly and bulky high-sensitivity magnetic field sensors is significant.

Liquid Crystal Orientation Properties on Homogeneous Polymer Surface by Various Alignment Methods

  • Kim, Young-Hwan;Lee, Kang-Min;Kim, Byoung-Yong;Oh, Byeong-Yun;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.16-19
    • /
    • 2009
  • We have studied the liquid crystal alignment properties for various alignment methods on the homogeneous polyimide surface. Suitable liquid crystal alignment for one-side alignment cell on the polyimide surface by all alignment method was observed. Highly pre-tilt angle of the NLC for both-side rubbing cell was measured. But, low pre-tilt angle of the NLC for one-side ion beam and UV irradiation cell was observed. We consider that the pre-tilt angle of NLC for one-side ion beam and UV irradiation on the PI surface is lower than that of the PI surface with rubbing. Also, the suitable transmittance-voltage curves for the one-side rubbing TN-LCD on the PI surface with one-side UV irradiation were measured. Also, good response time characteristics of the one-side rubbing TN-LCD on the polyimide surface with one-side UV irradiation can be measured.

Morphological study on non-seeded grown AlN single crystals (무종자결정 상에 성장된 AlN 결정의 형태학적 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.265-268
    • /
    • 2012
  • The growth of AlN single crystals of large size and good quality is of prime importance for UV LEDs and power devices applications. However, the crystals having the size of more than 1 inch and high quality have not been reported in the world. In the PVT growth of AlN, the crystal morphology of as grown were important because the preferred orientation of growth of it was evaluated for growth rate increase. In the present study, the AlN single crystals grown by PVT process were evaluated by the side of the growth morphology. Optical microscopic characterization was carried out to observe the shape of the crystals and the growth facets. Furthermore the growth habit of it were discussed by observation of the surface of AlN crystals.

Orientation control of $CuCrO_2$ films on different substrate by PLD (기판에 따른 p-type $CuCrO_2$ 박막의 성장방향변화)

  • Kim, Se-Yun;Sung, Sang-Yun;Jo, Kwang-Min;Hong, Hyo-Ki;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.142-142
    • /
    • 2011
  • Epitaxial $CuCrO_2$ thin films have been grown on single crystal substrate of c-plane $Al_2O_3$, $SrTiO_3$, YSZ and Quarts by laser ablation of a $CuCrO_2$ target using 266nm radiation from a Nd:YAG laser. X-ray measurements indicate that the $CuCrO_2$ grows epitaxially on all substrate, with its orientation dependent on the kinds of substrates. Most of the layer were polycrystalline with (001), (015) and random as the dominant surface orientation on c-plane YSZ, $SrTiO_3$ and quarts substrate, respectively. (001) orientated $CuCrO_2$ grows on C-plane $Al_2O_3$ and YSZ substrate, (015) orientated $CuCrO_2$ films are found on c-plane $SrTiO_3$ substrate and random orientated $CuCrO_2$ films grows on quarts substrate. These data are compared with the in-plane orientation and the mismatch of the $CuCrO_2$ and each substrate lattices in an attempt to relate the preferred orientation to the plane of the sapphire on which it is grown. Further characterization show that the grain size of the films increases for a substrate temperature increase, whereas the electrical properties of $CuCrO_2$ thin films depend upon their crystalline orientation.

  • PDF

A study of crystal growth and phase transition in $K_2Zn_{1-X}Co_XCl_4$ mixed crystal ($K_2Zn_{1-X}Co_XCl_4$ 결정 성장 및 상전이에 관한 연구)

  • 김성규;안호영;정세영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.278-285
    • /
    • 1998
  • It was known that the C-IC transition in the mixed crystal $(A_{1-x}A^'_x)_2ZnCl_4$ is smeared out with increasing x, which is attributed to the pinning effect of the doped A' ions. In this study, we introduce a new mixed crystal system $K_2Zn_{1-X}Co_XCl_4$, where doped Co ions do not destroy the orientation of the polarization in C phase and preserve the long range ordering of IC phase. We grew a series of mixed crystals $K_2Zn_{1-X}Co_XCl_4$ for x=0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1 by the Czochralski method and investigated the real composition of the mixed crystals, structure and the change of the C-IC phase transition with increasing x by the thermal analysis.

  • PDF

Studies of Liquid Crystal Alignment on the Photosensitive Polyvinylfluorocinnamate (광감성 폴리비닐플루오로신나메이트의 액정 배향에 관한 연구)

  • Kim, Dong-Soo;Ahn, Won-Sool;Ha, Ki-Ryong;Buluy, O.;Reznikov, Yu.
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • We studied the mechanism of liquid crystal alignment on polyvinylfluorocinnamate (PVCN-F) films which were irradiated by UV using polarized fourier transform infrared (FT-IR) spectroscopy and ultraviolet/visible (UV/Vis) spectroscopy. UV irradiation of PVCN-F films caused decrease of vinylene -C=C- stretching peak area at $1638cm^{-1}$ and shift of conjugated C:0 stretching vibration at $1712cm^{-1}\;to\;1734cm^{-1}$ which is caused by nonconjugated C=O stretching nitration. To study the orientation direction of 5CB liquid crystal (LC) molecules in the liquid crystal cell with PUV irradiation, rubbing treatment or without any treatment on the PVCN-F alignment layer, we used polarized FT-IR dichroism technique. We successfully measured 5CB LC alignment directions, which are perpendicular to the irradiated PUV polarization direction and parallel to the rubbing direction in the liquid crystal cell without using dichroic dyes.

Patterning of BiLaO film using imprinting process for liquid crystal display (임프린팅을 이용한 BiLaO 패터닝과 액정 디스플레이 소자의 응용)

  • Lee, Ju Hwan
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.64-68
    • /
    • 2021
  • We demonstrate an effect of annealing temperature on imprinting process of BiLaO thin film for liquid crystal alignment. BiLaO prepared sol-gel process was deposited by spin coating on a glass substrate, and then transferred to a pre-fabricated aligned pattern which is fabricated on a silicon wafer by laser interference lithography. Thin film was annealed at different temperature of 100, 150, 200, and 250 ℃. From the polarized optical microscopy analysis, the liquid crystal orientation was not uniform at the annealing temperature of 200 ℃ or lower and the uniform liquid crystal alignment characteristics were confirmed at the annealing temperature of 250 ℃. From atomic force microscopy, the pattern was not transferred at a temperature of 200 ℃ or lower. In contrast, the pattern was transferred at 250 ℃. Anisotropy of the thin film was obtained by the alignment pattern transferred at a temperature of 250 ℃, and the liquid crystal molecules could be evenly oriented on the thin film. Therefore, it was confirmed that the liquid crystal alignment process by the imprinting process of the BiLaO oxide film was affected by the annealing temperature.

Pulsed Terahertz Emission and Detection Properties from ZnTe Crystal (ZnTe 결정을 이용한 테라헤르츠파의 발생 및 검출 특성)

  • Jin, Yun-Sik;Jeon, Seuk-Gy;Kim, Keun-Ju;Sohn, Chae-Hwa;Jung, Sun-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.553-559
    • /
    • 2005
  • Pulsed terahertz (THz) radiation was generated by optical rectification and detected by a fee space electro-optic sampling (FS-EOS) method. We used ZnTe (110) crystals for both generation and detection. By coating dielectric anti-reflection film on the ZnTe crystal surface, we can reduce the reflectance of a pump laser beam from $30\%$ to $2\%$, and the terahertz pulse amplitude increased $27\%$ compared with an uncoated crystal. A wider bandwidth of THz radiation was obtained by using a thinner crystal but the signal intensity was decreased in this case. And variations of THz radiation by changing orientation of the ZnTe crystal with respect to the pump (or probe) laser polarization, and by changing the power of the pump laser have also been investigated and discussed.

Understanding and Research Trends in Liquid Crystal Elastomer Fibers (액정 엘라스토머 섬유의 이해와 연구동향)

  • Young Been Kim;Dae Seok Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2023
  • Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.