온라인 게임 봇은 이미 수 많은 방식을 통해 사람들에게 알려져 왔으며, 사용자의 게임 흥미 저하, 게임 내 경제 순환 파괴, 게임 컨텐츠 및 수명 단축 등 많은 문제점을 야기한다. 정상적이지 않은 게임 봇 운영을 방치하는 것은 장기적으로 게임 제작사와 게임 플레이어에게 모두 악영향을 미치게 되므로 이에 대한 탐지 및 제재는 필수가 되었다. 하지만 제재 단계에서 생기는 오인 제재의 딜레마를 피하기 쉽지 않다. 게임사 측에서 유저를 제재하기 위해서는 객관적인 분석 지표인 로그를 가지고 제재 여부를 판단해야 하며, 로그에서 추출한 정보를 근거로 확보해야 한다. 본 연구에서는 탐지 대상 기간의 로그에 대하여 이를 일일 단위로 나누어서 게임봇 유저 판별을 수행할 것이다. 일일 단위 탐지를 위해 탐지 기간을 하루 단위로 나누어 해당 일자에 대한 게임봇 여부를 우선 판별하고, 이후 최종 결과를 판단하였다. 제안한 방법론을 통해 일반 유저 스타일과 게임봇 유저 스타일이 섞여 있는 경우를 쉽게 탐지해 낼 수 있을 것이다. 본 논문에서 제안한 방법론으로 테스트한 결과, 분류 정확도를 확인할 수 있는 지표 중 하나인 F1-score가 0.898에서 0.945로 향상되었다.
전(全) 산업 분야에서 ICT 융합화가 진행되고 공급망의 글로벌 생태조성이 가속화됨에 따라, 공급망 위험 또한 지속적으로 증가하고 있다. 특히, ICT 제품의 공급망은 관리해야 할 기술적·환경적 요인들이 매우 복잡하여, 전체 생명주기에 걸친 투명한 관리가 어렵다. 이에 미국·영국·EU 등 세계 주요국과 국제연합은 ICT 제품 공급망 대상의 사이버 공급망 보안 관련 연구와 정책을 수행·수립 중이다. 우리나라도 2019년 발표한 국가사이버안보전략의 기본계획 내에 주요 ICT 장비의 공급망 보안을 위한 관리체계를 구축하는 등 현안으로써 추진하고 있으나, 국가·공공기관을 위한 조직·기관 수준의 정책은 아직 부재한 상황이다. 본 논문에서는 미국의 사이버 공급망 보안 관리체계를 검토하여, 사이버 공급망 보안 관점의 우리나라 국가 정보보안 기본지침 보완방안을 제시한다. 이는 국내 정보보안 분야에서 도입 가능한 사이버 공급망 조치사항의 참고 자료가 될 것으로 기대한다.
4차 산업혁명의 초연결사회에서 악성코드 공격은 더욱 기승을 부리고 있다. 이러한 악성코드 대응을 위해 인공지능기술을 이용한 악성코드 탐지 자동화는 새로운 대안으로 주목받고 있다. 그러나, 인공지능의 신뢰성에 대한 담보없이 인공지능을 활용하는 것은 더 큰 위험과 부작용을 초래한다. EU와 미국 등은 인공지능의 신뢰성 확보방안을 강구하고 있으며, 2021년 정부에서는 신뢰할 수 있는 인공지능 실현 전략을 발표했다. 정부의 인공지능 신뢰성에는 안전과 설명가능, 투명, 견고, 공정의 5가지 속성이 있다. 우리는 악성코드 탐지 모델에 견고를 제외한 안전과, 설명가능, 투명, 공정의 4가지 요소를 구현하였다. 특히 외부 기관의 검증을 통해 모델 정확도인 일반화 성능의 안정성을 입증하였고 투명을 포함한 설명가능에 중점을 두어 개발하였다. 변화무쌍한 데이터에 의해 학습이 결정되는 인공지능 모델은 생명주기 관리가 필요하다. 이에 인공지능 모델을 구성하는 데이터와 개발, 서비스 운영을 통합하는 MLOps 프레임워크에 대한 수요가 늘고 있다. EXE 실행형 악성코드와 문서형 악성코드 대응 서비스는 서비스 운영과 동시에 데이터 수집원이 되고, 외부 API를 통해 라벨링과 정제를 위한 정보를 가져오는 데이터 파이프라인과 연계하도록 구성하였다. 클라우드 SaaS 방식과 표준 API를 사용하여 다른 보안 서비스 연계나 인프라 확장을 용이하게 하였다.
인공지능이 이미지 편집 기술에 적용되어 조작 흔적이 거의 없는 고품질 이미지를 생성할 수 있게 되었다. 그러나 이러한 기술들은 거짓 정보 유포, 증거 인멸, 사실 부인 등의 범죄 행위에 악용될 수 있기 때문에 이에 대응하기 위한 방안이 필요하다. 본 연구에서는 이미지 조작을 탐지하기 위해 이미지 파일 분석과 모바일 포렌식 아티팩트 분석을 수행한다. 이미지 파일 분석은 조작된 이미지의 메타데이터를 파싱하여 Reference DB와 비교분석을 통해 조작여부를 탐지하는 방법이다. Reference DB는 이미지의 메타데이터에 남는 조작 관련 아티팩트를 수집하는 데이터베이스로서, 이미지 조작을 탐지하는 기준이 된다. 모바일 포렌식 아티팩트 분석은 이미지 편집 도구와관련된 패키지를 추출하고 분석하여 이미지 조작을 탐지하도록 한다. 본 연구에서 제안하는 방법론은 기존의 그래픽적 특징기반 분석의 한계를 보완하고, 이미지 처리 기법과 조합하여 오탐을 줄일 수 있도록 한다. 연구 결과는 이러한 방법론이 디지털 포렌식 조사 및 분석에 유의미하게 활용될 수 있음을 보여준다. 또한, 조작된 이미지 데이터셋과 함께 이미지 메타데이터 파싱 코드와 Reference DB를 제공하여 관련 연구에 기여하고자 한다.
암호 분석은 알려진 평문 공격, 차분 분석, 부채널 분석 등과 같이 다양한 기법으로 수행될 수있다. 최근에는 딥러닝을 암호 분석에 적용하는 연구들이 제안되고 있다. 알려진 평문 공격(Known-plaintext Attack)은 알려진 평문과 암호문 쌍을 사용하여 키를 알아내는 암호 분석 기법이다. 본 논문에서는 딥러닝 기술을 사용하여 경량 블록 암호 PRESENT의 축소 버전인 S-PRESENT에 대해 알려진 평문 공격을 수행한다. 축소된 경량 블록 암호에 대해 수행된 최초의 딥러닝 기반의 알려진 평문 공격이라는 점에서 본 논문은 의의가 있다. 성능 향상 및 학습속도 개선을 위해 Skip connection, 1x1 Convolution과 같은 딥러닝 기법을 적용하였다. 암호 분석에는 MLP(Multi-Layer Perceptron)와 1D, 2D 합성곱 신경망 모델을 사용하여 최적화하였으며, 세 모델의 성능을 비교한다. 2D 합성곱 신경망에서 가장 높은 성능을 보였지만 일부 키공간까지만 공격이 가능했다. 이를 통해 MLP 모델과 합성곱 신경망을 통한 알려진 평문 공격은 공격 가능한 키 비트에 제한이 있음을 알 수 있다.
최근 컴퓨팅 및 통신 기술의 발달로 인해 IoT 디바이스가 급격히 확산·보급되고 있다. 특히 IoT 디바이스는 가정에서부터 공장에 이르기까지 그 목적에 따라 연산을 수행하거나 주변 환경을 센싱하는 등의 기능을 보유하고 있어 실생활에서의 활용이 폭넓게 증가하고 있다. 하지만, 제한된 수준의 하드웨어 자원을 보유한 IoT 디바이스는 사이버공격에 노출되는 위험도가 높으며, 이로 인해 IoT 봇넷은 악성행위의 경유지로 악용되거나 연결된 네트워크로 감염을 빠르게 확산함으로써 단순한 정보 유출뿐만 아니라 범국가적 위기를 초래할 가능성이 존재한다. 본 논문에서는 폭넓게 활용되고 있는 IoT 네트워크에서 알려지지 않은 보안위협에 선제적으로 대응하기 위해 IoT 봇넷의 네트워크 행위특징을 활용한 선제탐지 방법을 제안한다. IoT 봇넷이 접근하는 다크넷 트래픽을 분석하여 4가지 행위특징을 정의하고 이를 통해 감염의심 IP를 빠르게 선별한다. 분류된 IP는 사이버 위협 인텔리전스(CTI)를 활용하여 알려지지 않은 의심 호스트 여부를 확인한 후, 디바이스 핑거프린팅을 통해 IoT 봇넷에의 소속 여부를 최종 결정한다. 제안된 선제탐지 방법의 유효성 검증을 위해 실제 운용 중인 보안관제 환경의 다크넷 대역에 방법론 적용 및 확인 결과, 선제탐지 한 약 1,000개의 호스트가 실제 악성 IoT 봇넷임을 10개월간 추적관찰로 검증하여 그 유효성을 확인하였다.
클라우드 컴퓨팅 시장이 성장하면서 다양한 클라우드 서비스가 안정적으로 제공되고 있으며 국내행정·공공기관은 모든 정보시스템을 클라우드 시스템으로 운영하기 위한 전환사업을 수행하고 있다. 그러나 인터넷을 통해 클라우드 자원에 접근할 경우, 내·외부 인력의 잘못된 자원 사용 및 악의적인 접근이 가능하기 때문에 사전에 클라우드 서비스를 안전하게 운영하기 위한 보안 기술을 마련하는 것이 필요하다. 본 논문은 클라우드 서비스 중, 민감한 데이터를 저장하는 클라우드 스토리지 서비스에 대해 제로 트러스트 기반으로 보안 기술을 설계하고, 설계된 보안기술을 실제 클라우드 스토리지에 적용하여 보안 기술의 실효성을 검증한다. 특히, 보안 기술 적용 여부에 따른 클라우드 사용자의 상세 접근 및 사용 행위를 추적하기 위하여 메모리 포렌식, 웹 포렌식, 네트워크 포렌식을 수행한다. 본 논문에서는 클라우드 스토리지 서비스로서 Amazon S3(Simple Storage Service)를 사용하고, S3의제로트러스트 기술로는 접근제어목록 및 키 관리 기술을 사용한다. 또한, S3에 대한 다양한 접근 유형을 고려하기 위하여 AWS(Amazon Web Services) 클라우드 내·외부에서 서비스 요청을 발생시키고, 서비스 요청위치에 따른 보안 기술 적용 효과를 분석한다.
최근 소프트웨어 제품의 복잡성 증가로 오픈소스 소프트웨어를 적극 활용하는 경우가 많아지고 있다. 이는 개발 기간 단축에 도움을 주지만, 동시에 사용된 오픈소스 소프트웨어간의 서로 다른 개발 생명 주기(SDLC)가 전체 제품의 버전 최신화를 어렵게 하기도 한다. 이로 인해 사용된 오픈소스 소프트웨어의 알려진 취약점에 대한 패치가 공개되었음에도 불구하고, 패치를 신속히 적용하지 못해 공개 취약점의 위협에 노출되는 경우가 많다. 특정 장치가 이런 위협에 노출되어있는지를 신속히 판별하기 위한 공개 취약점 식별 기법에 관한 여러 연구 들이수행되어 왔는데, 기존 기법들은 취약점이 발생하는 함수의 크기가 작거나 인라인되는 경우 취약점 발견에 어려움을 겪는 경우가 많다. 본 연구는 이런 문제를 해결하기 위해 함수 호출 관계 및 데이터 흐름 분석을 통한 바이너리 코드 유사성 비교 도구인 FunRank를 개발하였다. 개발된 도구는 기존 연구들과 달리, 컴파일러에 의해 인라인 될 수 있는 크기가 작은 함수의 코드를 식별해야만 발견할 수 있는 공개취약점 또한 찾아낼 수 있도록 설계되어 있다. 본 연구에서 인위적으로 만들어진 벤치마크 및 실제 펌웨어로부터 추출된 바이너리를 이용해 실험한 결과, FunRank가 바이너리 코드 내에서 인라인 된 함수를 잘 찾아내고, 이를 통해 공개된 취약점의 존재성을 빠르게 확인하는 데에 도움을 줌을 보일 수 있었다.
최근 사용자의 익명성이 보장되는 블록체인의 특성으로 인해 블록체인 기반 기술인 암호화폐가 불법 거래 등의 범죄에 악용되는 사례가 증가하고 있다. 하지만 암호화폐는 암호화폐 지갑에서 보호되어 범죄 자금환수에 어려움이 있는 실정이다. 따라서 본 연구는 범죄에 사용된 암호화폐를 추적·환수하기 위해 브라우저 익스텐션 월렛 4종(Metamask, Binance, Phantom, Kaikas)을 대상으로 사용자 행위에 기반하여 로컬 PC의데이터와메모리영역에서 아티팩트를 획득하고, 디지털 포렌식 관점에서의 활용 방안을 분석한다. 분석 결과로 브라우저의 캐시데이터에서 획득한 API명을 통해 피의자가 사용한 지갑과 암호화폐의 종류를 확인했으며 송금 거래에 사용된 URL과지갑 주소를 획득했다. 또한 쿠키 데이터에서 사용된 디바이스를 식별할 수 있는 Client ID를확인하고, 메모리에서 니모닉 코드를 획득 가능함을 확인했다. 추가적으로, 획득가능한 니모닉 코드의 지속성을 측정하고 획득을 자동화하기 위한 알고리즘을 제안한다.
개인정보보호에 대한 인식이 증가하면서 사용자 PC의 데이터를 보호하기 위해 실시간 암호화 또는 가상 드라이브 볼륨을 사용하는 다양한 Full Disk Encryption (FDE) 계열 응용프로그램이 개발되고 있다. FDE 계열 응용프로그램은 사용자의 주요 데이터가 담긴 볼륨을 암호화하여 보호한다. 그러나 디스크 암호화 기술이 발전함에 따라 일부 사용자들은 특정 범죄 행위와 관련된 증거를 암호화하는 등 이를 악용하여 포렌식 수사에 어려움을 주고 있다. 이에 대응하기 위해 FDE 계열 응용프로그램에 사용된 암호화 과정을 분석하여, 암호화된 데이터를 복호화하는 선행연구가 필요하다. 본 논문에서는 볼륨 암호화 및 백업 기능을 제공하는 Cryptomator와 Norton Ghost를 분석한다. 암호화된 데이터 구조와 암호화 과정을 분석하여 주요 데이터를 분류하고, 데이터 복호화에 사용되는 암호화 알고리즘을 식별한다. 해당 응용프로그램들의 암호화 알고리즘은 최근에 등장하고 있거나 커스텀된 암호화 알고리즘으로 이를 분석하여 주요 데이터를 복호화한다. 복호화에 사용되는 데이터 암호키를 생성하기 위해 사용자 패스워드가 필수적으로 요구되며, 각 응용프로그램의 기능을 사용하여 패스워드 획득 방안을 제시한다. 이는 패스워드 전수조사의 한계를 보완하였으며, 획득한 패스워드를 기반으로 암호화된 데이터를 복호화하여 사용자의 주요 데이터를 식별한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.