• Title/Summary/Keyword: Cryptographic Protocol

Search Result 179, Processing Time 0.026 seconds

POCS Based Digital Watermarking in Buyer-Seller Watermarking Protocal (Buyer-Seller 워터마킹 프로토콜 상에서 POCS 기반의 디지털 워터마킹)

  • Kwon, Seong-Geun;Lee, Ji-Hye;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.5
    • /
    • pp.569-582
    • /
    • 2007
  • Digital watermarking technique for copyright protection and prevention of illegal copy and distribution can provide the reliable transaction to both buyer and seller in e-commerce through the cryptographic protocol such as 'Buyer-seller watermarking protocol'. Recently there has been researched about some cryptographic protocols for watermarking system but there has no yet mentioned about the implementation of practical watermarking technique in protocol. This paper presents the watermark embedding technique based on POCS in buyer-seller watermarking protocol. The proposed method designs the robust convex set based on EZW and the invisible convex set using PSNR and then projects into two sets until the convergence condition is satisfied. Experimental results verified that BER of watermark that is embedded by the proposed method has lower 0.02-0.10 than BER of the conventional method.

  • PDF

An Improvement of Mobile IPv6 Binding Update Protocol Using Address Based Keys (주소기반의 키를 사용하는 모바일 IPv6 바인딩 갱신 프로토콜 개선)

  • You, Il-Sun;Choi, Sung-Kyo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.21-30
    • /
    • 2005
  • Recently, a mobile IPv6 binding update protocol using Address Based Keys (BU-ABK) was proposed. This protocol applies Address Based Keys (ABK), generated through identity-based cryptosystem, to enable strong authentication and secure key exchange without any global security infrastructure. However, because it cannot detect that public cryptographic parameters for ABKs are altered or forged, it is vulnerable to man-in-the-middle attacks and denial of service attacks. Furthermore, it has heavy burden of managing the public cryptographic parameters. In this paper, we show the weaknesses of BU-ABK and then propose an enhanced BU-ABK (EBU-ABK). Furthermore, we provide an optimization for mobile devices with constraint computational power. The comparison of EBU-ABK with BU-ABK shows that the enhanced protocol achieves strong security while not resulting in heavy computation overhead on a mobile node.

A Study on the Effective WTLS Processor Design adapted in RFID/USN Environment (RFID/USN 환경에 적합한 효율적인 WTLS 프로세서 설계에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2754-2759
    • /
    • 2011
  • With information communications and RFID/USN environments merged wire/wireless networks are generalized. In this viewpoint, WAP is used by communication protocol for the data communication in the field of wireless environment. WTLS developed for the secure communications optimize TLS adapted wireless environment in the TCP/IP internet protocol. But WTLS denote WAP security problem, end-to-end problem, and power consumption, etc. Therefore in this paper we proposed WTLS cryptographic algorithm eliminated WTLS disadvantages. Proposed algorithm solved power consumption, calculated complexity, and security problems because it is not unique but hybrid form.

Efficient On-line Secret Sharing scheme based on One-way Hash Function (일반향 해쉬 함수에 기반한 효율적인 온라인 비밀분산 방식)

  • Oh, Soo-Hyun;Kim, Seung-Joo;Won, Dong-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3128-3137
    • /
    • 2000
  • Secret sharing scheme is a cryptographic protocol in which a dealer distribures shares of a secret among a set of participants such that only authorized set of participants can recover the secret at a later. Secret sharing is an important cryptographic primitive in management of secret information, secure multiparty protocol and group-oriented cryptography, etc. In this paper, we propose an efficient, on-line secret sharing scheme based on one-way hash function. This scheme provides the property to share multiple secrets and allows participants to be added/deleted dynamically, without having to redistributo new shares. Proposed scheme has advantage to detect cheating and identify of all cheater, regardless of then number. Frthermore, it is more eficient than previous schemes.

  • PDF

Secure Key Management Protocol in the Wireless Sensor Network

  • Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.48-51
    • /
    • 2006
  • To achieve security in wireless sensor networks (WSN), it is important to be able to encrypt messages sent among sensor nodes. We propose a new cryptographic key management protocol, which is based on the clustering scheme but does not depend on the probabilistic key. The protocol can increase the efficiency to manage keys since, before distributing the keys by bootstrap, the use of public keys shared among nodes can eliminate the processes to send or to receive keys among the sensors. Also, to find any compromised nodes safely on the network, it solves safety problems by applying the functions of a lightweight attack-detection mechanism.

ON EFFICIENT TWO-FLOW ZERO-KNOWLEDGE IDENTIFICATION AND SIGNATURE

  • Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.869-877
    • /
    • 2011
  • In this paper, we propose an efficient two-flow zero-knowledge blind identification protocol on the elliptic curve cryptographic (ECC) system. A. Saxena et al. first proposed a two-flow blind identification protocol in 2005. But it has a weakness of the active-intruder attack and uses the pairing operation that causes slow implementation in smart cards. But our protocol is secure under such attacks because of using the hash function. In particular, it is fast because we don't use the pairing operation and consists of only two message flows. It does not rely on any underlying signature or encryption scheme. Our protocol is secure assuming the hardness of the Discrete-Logarithm Problem in bilinear groups.

Security Framework for Hybrid Wireless Mesh Protocol in Wireless Mesh Networks

  • Avula, Mallikarjun;Lee, Sang-Gon;Yoo, Seong-Moo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1982-2004
    • /
    • 2014
  • Wireless Mesh Networks (WMNs) are emerging as promising, convenient next generation wireless network technology. There is a great need for a secure framework for routing in WMNs and several research studies have proposed secure versions of the default routing protocol of WMNs. In this paper, we propose a security framework for Hybrid Wireless Mesh Protocol (HWMP) in WMNs. Contrary to existing schemes, our proposed framework ensures both end-to-end and point-to-point authentication and integrity to both mutable and non-mutable fields of routing frames by adding message extension fields to the HWMP path selection frame elements. Security analysis and simulation results show that the proposed approach performs significantly well in spite of the cryptographic computations involved in routing.

Election Protocol using Verifiable Interactive Oblivious Transfer and Blind Signature (내용 은닉서명과 VIOT를 적용한 전자선거 프로토콜)

  • Kim, Sang-Choon;Yi, Yong-Ju;Lee, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.392-400
    • /
    • 2000
  • In this paper, we propose an electronic election protocol based on VIOT protocol which utilizes public key cryptographic system and blind signature method to meet the seccurity requirement in election systems. Our proposed electronic election protocol provide voter's privacy and non-repudiation functionality which detect any misdemeanors of voters or relevant personnels.

  • PDF

Dictionary Attacks against Password-Based Authenticated Three-Party Key Exchange Protocols

  • Nam, Junghyun;Choo, Kim-Kwang Raymond;Kim, Moonseong;Paik, Juryon;Won, Dongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3244-3260
    • /
    • 2013
  • A three-party password-based authenticated key exchange (PAKE) protocol allows two clients registered with a trusted server to generate a common cryptographic key from their individual passwords shared only with the server. A key requirement for three-party PAKE protocols is to prevent an adversary from mounting a dictionary attack. This requirement must be met even when the adversary is a malicious (registered) client who can set up normal protocol sessions with other clients. This work revisits three existing three-party PAKE protocols, namely, Guo et al.'s (2008) protocol, Huang's (2009) protocol, and Lee and Hwang's (2010) protocol, and demonstrates that these protocols are not secure against offline and/or (undetectable) online dictionary attacks in the presence of a malicious client. The offline dictionary attack we present against Guo et al.'s protocol also applies to other similar protocols including Lee and Hwang's protocol. We conclude with some suggestions on how to design a three-party PAKE protocol that is resistant against dictionary attacks.

Efficient Certificateless Authenticated Asymmetric Group Key Agreement Protocol

  • Wei, Guiyi;Yang, Xianbo;Shao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3352-3365
    • /
    • 2012
  • Group key agreement (GKA) is a cryptographic primitive allowing two or more users to negotiate a shared session key over public networks. Wu et al. recently introduced the concept of asymmetric GKA that allows a group of users to negotiate a common public key, while each user only needs to hold his/her respective private key. However, Wu et al.'s protocol can not resist active attacks, such as fabrication. To solve this problem, Zhang et al. proposed an authenticated asymmetric GKA protocol, where each user is authenticated during the negotiation process, so it can resist active attacks. Whereas, Zhang et al.'s protocol needs a partially trusted certificate authority to issue certificates, which brings a heavy certificate management burden. To eliminate such cost, Zhang et al. constructed another protocol in identity-based setting. Unfortunately, it suffers from the so-called key escrow problem. In this paper, we propose the certificateless authenticated asymmetric group key agreement protocol which does not have certificate management burden and key escrow problem. Besides, our protocol achieves known-key security, unknown key-share security, key-compromise impersonation security, and key control security. Our simulation based on the pairing-based cryptography (PBC) library shows that this protocol is efficient and practical.