• 제목/요약/키워드: Cryogenics cooling system

검색결과 112건 처리시간 0.019초

Review on innovative small refrigeration methods for sub-Kelvin cooling

  • Dohoon, Kwon;Junhyuk, Bae;Sangkwon, Jeong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권4호
    • /
    • pp.71-77
    • /
    • 2022
  • Sub-Kelvin cooling has been generally demanded for the fields of low temperature physics, such as physical property measurements, astronomical detection, and quantum computing. The refrigeration system with a small size can be appropriately introduced when the measurement system does not require a high cooling capacity at sub-Kelvin temperature. The dilution refrigerator which is a common method to reach sub-Kelvin, however, must possess a large 3He circulation equipment at room temperature. As alternatives, a sorption refrigerator and a magnetic refrigerator can be adopted for sub-Kelvin cooling. This paper describes those coolers which have been developed by various research groups. Furthermore, a cold-cycle dilution refrigerator of which the size of the 3He circulation system is minimized, is also introduced. Subsequently, a new concept of dilution refrigerator is proposed by our group. The suggested cooler can achieve sub-Kelvin temperature with a small size since it does not require any recuperator and turbo-molecular vacuum pump. Its architecture allows the compact configuration to reach sub-Kelvin temperature by integrating the sorption pump and the magnetic refrigerators. Therefore, it may be suitably utilized in the low temperature experiments requiring low cooling capacity.

Experimental study on natural circulation using liquid nitrogen for superconducting applications

  • Choi, Yeon Suk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.49-52
    • /
    • 2013
  • An experiment to investigate the natural circulation of a cryogen has been performed. The study is motivated mainly by our recent development of cryogenic cooling system for prototype superconducting cyclotron without any circulating pump. In the natural circulation loop system, a cooling channel is attached on the outer surface of the aluminium block and the liquid nitrogen passes through inside of the channel to cool the block indirectly. A cryocooler as a heat sink is located at the top to re-condense cryogenic vapor coming from the aluminium block in which electrical heater is installed as a heat source. The main dimensions are determined using the relevant analysis and the natural circulation loop is successfully fabricated. The temperature distributions in the loop are measured during initial cool-down process and in steady state, from which the modified Grashof numbers are calculated and compared with the existing correlation estimated with one-dimensional analysis for steady state flow.

Cooling Performance Test of the KEPCO HTS Power Cable

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권2호
    • /
    • pp.41-43
    • /
    • 2009
  • The HTS power cable system of 3-phase 100-m class has been tested at the KEPCO's Gochang power testing center in Korea during 8,000 hours or more for investigating long-term operating performance. The system is rated 22.9kV, 1250A and is cooled with sub cooled liquid nitrogen. Several cooling performance tests such as cooling capacity, heat load, AC loss, temperature stability and thermal cycle were performed at operating temperature of 66.4K and several different temperatures.

전도냉각형 저온용기에서 중간냉각의 최적화 (Optimization of intermediate cooling in conduction-cooled cryostat)

  • 장호명;박정수;김성래;김형진;진홍범;이봉근
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.155-158
    • /
    • 2001
  • An intermediate cooling is indispensible to reduce the refrigeration power at superconducting system that is cooled conductively by a cryocooler without liquid cryogens. The cooling load at the intermediate stage is caused by the mechanical supports, the radiation shield and the current lead. From the cooling load calculation, a thermodynamic analysis that take into account the temperature-dependent properties of the materials and the actual performance of the cryocooler is developed. For any given physical dimensions of the various components, it is shown that there exist a unique optimum for the intermediate temperature to minimize the overall refrigeration power. The results of this study can be usefully applied to the selection of the cryocooler as well as the design of the conduction-cooled cryostat.

  • PDF

열상장비용 스터링 극저온 냉동기 특성평가 (I) : 성능시험 (The performance evaluation of Stirling cryocooler for thermal imaging system (II) : Performance test)

  • 박성제;홍용주;김효봉;김양훈;이성래;이기백;나종문
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.320-323
    • /
    • 2003
  • This paper presents the results of a series of performance tests for the Stilting cryocooler. A free piston and free displacer(FPFD) Stilting cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM. Our coolers are specifically designed to work in the thermal imaging device and to meet requirements such as cooling capacity, COP and high reliability. In this work, Stilting cryocooler is designed, manufactured and fabricated, and performance characteristics for the cooling capacity / applied input power and cool down time are investigated. This cooler delivers approximately 0.9W cooling at 80K for 30W ~ 40W of input power. And, It takes approximately 2 minutes to cool down to 80K at the ambient temperature of 23$^{\circ}C$.

  • PDF

GM 냉동기를 이용한 네온액화시스템 제작과 특성 (Neon liquefaction system manufacture and characteristic that use GM refrigerator)

  • 권운식;손명환;백승규;이언용;권영길;서정세;문태선;조창호
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.278-280
    • /
    • 2003
  • We manufactured neon liquefaction system for cooling system of HTS motor. The neon liquefaction system consists of a GM refrigerator, a liquefaction vessel and a vacuum chamber. It is found that the neon starts to be liquefied in the liquefaction vessel after 35 minutes of cool-down from gas state of 294k. Capacity of neon liquefaction system and the liquefaction rate were about 36W, 0.1g/s.

  • PDF

전도냉각에 의한 1.2 KV/80 A급 유도형 고온초전도 한류기의 설계, 제작 및 테스트에 관한 연구 (A Study on Design, Fabrication Techniques and Test Results of 1.2kV 180A Inductive Superconducting Fault Current Limiter by Conduction-Cooled System)

  • 강형구;전우용;이승제;안민철;배덕권;윤용수;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.30-35
    • /
    • 2003
  • The inductive superconducting fault current limiter (SFCLJ limits the fault current with its dc reactor. To fabricate the optimal dc reactor for inductive SFCL, several design and manufacturing technologies are necessary. In this paper, the manufacturing technology for dc reactor and cryogenic cooling method are described in detail. GM-cryocooler was used enlarge the critical current of dc reactor by cooling down the temperature of dc reactor about 20 K. Moreover, the results of short circuit test were described. Finally, the thermal characteristics of conduction-cooled system were discussed and then, sub-cooled nitrogen system was proposed to enhance the thermal stability of dc reactor.

6.6kV/200A급 유도형 한류기용 과냉질소 냉각시스템의 특성 (Characteristic of sub-cooled nitrogen cryogenic system for 6.6kV/200A Inductive Superconducting Fault Current Limiter)

  • 박동근;강형구;윤경용;주민석;김태중;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.234-236
    • /
    • 2003
  • The cryogenic system for inductive superconducting fault current limiter (SFCL) has been investigated recently. In this investigation, the sub-cooled nitrogen cryogenic system was adopted to enhance the performance of DC reactor for 6.6㎸/200A inductive SFCL. In sub-cooled nitrogen state at 64K, the critical current value and the thermal conductivity are larger than those of saturated nitrogen state at 77K and the electrical insulation capacitance should be remarkably enhanced. The solenoid type of 84mH superconducting DC reactor was fabricated and cooled down to 64K by using sub-cooled cooling method with GM-cryocooler and rotary pump. The fabrication techniques of cryogenic system and some experimental results such as cooling down characteristic are introduced in this study. Moreover, the sub-cooled nitrogen cryogenic system was detailedly introduced in this paper.

  • PDF

회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구 (Experimental investigation of the Rotating Cryogenic System)

  • 이창규;정상권
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2000년도 KIASC Conference 2000 / 2000년도 학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the jheat transfer characteristic of the rotating cryogenic system.

  • PDF

Design Considerations of Cryogenic Cooling System for High Field Magnets

  • Choi, Yeon-Suk;Kim, Dong-Lak;Lee, Byoung-Seob;Yang, Hyung-Suk;Yoo Jong-Shin;Painter Thomas A.;Miller John R.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권4호
    • /
    • pp.30-33
    • /
    • 2006
  • Several crucial issues are discussed in the design of cryogenic cooling system for high field magnets. This study is mainly motivated by our ongoing program to develop a 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The magnets of this system will be built horizontally to accomplish the requirement of user friendliness and reliability, and the replenishment of cryogen will not be necessary by a closed-loop cooling concept. The initial cool-down and safety are basically considered in this paper. The effects of the helium II volume and the gap distance of the weight load relief valve (or safety valve) on the cool-down time and temperature rising during an off-normal state are discussed. The total amount of cryogenic cooling loads and the required helium flow rate during cool-down are also estimated by a relevant heat transfer analysis. The temperatures of cryogen-free radiation shield are finally determined from the refrigeration power of a cryocooler and the total cryogenic loads.